PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First principles investigations of HgX (X=S, Se and Te)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study is to determine the structural, and mechanical properties of Hg chalcogenide materials (HgX; X=S, Se, Te) in the zinc-blende structure which are presented as promising candidates for modern optoelectronic and spintronic applications. The dependence of elastic constants of pressure for three materials are evaluated. Moreover, isotropic mechanical properties such as bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio are obtained. Design/methodology/approach: First principles calculations based on Density Functional Theory are performed by employing Projector Augmented Waves potentials. The electronic exchange and correlation function is treated by using Generalized Gradient Approximation parametrized by Perdew, Burke and Ernzerhof (PBE96). Findings: Calculated results of structural and mechanical properties are in good agreement with those of experimental and other theoretical studies. This three materials in zinc-blende structure are mechanically stable. İsotropic mechanical properties are also obtained. Resistance against both linear strain and shear strain and ductility decrease as we go into the sequence of HgS−>HgSe−>HgTe. The wave velocities and Debye temperatures calculated for this materials. Debye temperatures are founded for HgS, HgSe and HgTe as 306.21 K, 264.30 K and 240.19 K, respectively Research limitations/implications: Calculation speeds of the computers and data storage are some limitations. Also, the lack of experimental data hinder for the comparison of our results. Practical implications: Obtaining high pressure elastic constants by calculations is preferable since it is very difficult or even impossible to measure them by experimentally. Originality/value: There are only restricted number of investigation of elastic constants of mercury chalcogenides both theoretically and experimentally.
Rocznik
Strony
5--11
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • Department of Physics, Pamukkale University, Kınıklı Campus, 20017 Denizli, Turkey
autor
  • Department of Physics, Pamukkale University, Kınıklı Campus, 20017 Denizli, Turkey
  • Department of Physics, Pamukkale University, Kınıklı Campus, 20017 Denizli, Turkey
autor
  • Department of Physics, Pamukkale University, Kınıklı Campus, 20017 Denizli, Turkey
Bibliografia
  • [1] A. Delin, T. Klüner, Excitation spectra and groundstate properties from density-functional theory for the inverted band-structure systems -HgS, HgSe, and HgTe, Physical Review B 66 (2002) 035117.
  • [2] W. Xu, S. Lou, S. Li, H. Wang, H. Shen, J.Z. Niu, Z. Du, L.S. Li, Moderate temperature synthesis of flower- and dot-shaped HgS nanocrystals, Colloids and Surfaces A: Physicochemical and Engineering Aspects 341 (2009) 68-72.
  • [3] F. Virot, R. Hayn, M. Richter, J.V.D. Brink, Engineering Topological Surface States: HgS, HgSe, and HgTe, Physical Review Letters 111 (2013) 146803.
  • [4] A. N. Chantis, M.V. Schilfgaarde, T. Kotani, Ab Initio Prediction of Conduction Band Spin Splitting in Zinc Blende Semiconductors, Physical Review Letters 96 (2006) 086405.
  • [5] K.U. Gawlik, L. Kipp, M. Skibowski, N. Orlowski, R. Manzke, HgSe-Metal or Semiconductor, Physical Review Letters 78 (1997) 3165-3168.
  • [6] S.S. Kale, C.D. Lokhande, Preparation and characterization of HgS films by chemical deposition, Materials Chemistry and Physics 59 (1999) 242-246.
  • [7] S. Biering, P. Schwerdtfeger, A comparative density functional study of the low pressure phases of solid ZnX, CdX, and HgX: Trends and relativistic effects, The Journal of Chemical Physics 136 (2012) 034504.
  • [8] A. San-Miguel, Pressure evolution of the cinnabar phase of HgTe, Physical Review B 51 (1995) 8731- 8736.
  • [9] A. Werner, H.D. Hochheimer, K. Strössner, A. Jayaraman, High-pressure x-ray diffraction studies on Hg Te and HgS to 20 GPa, Physical Review B 28 (1983) 3330-3334.
  • [10] R.J. Nelmes, M.I. McMahon, Structural Transitions in the Group IV, III-V, and II-VI Semiconductors under Pressure, Semiconductors and Semimetals 54 (1998) 145-246.
  • [11] P.W. Bridgman, The compressions of 46 substances to 50,000 kg/cm 2, Proceedings of the American Academy of Arts and Sciences 74 (1940) 21-51.
  • [12] V.V. Shchennikov, S.V. Ovsyannikov, Thermoelectric properties and phase transitions of II-VI semiconductors at high pressure, Physica Status Solidi B 244 (2007) 437-442.
  • [13] J.R. Chelikowsky, High-pressure phase transitions in diamond and zinc-blende semiconductors, Physical Review B 35 (1987) 1174-1180. [14] P.J. Ford, A.J. Miller, G.A. Saunders, Y.K. Yo urtçu, J.K. Furdyna, M. Jaczynski, The effects of pressure on the elastic constants of mercury selenide up to the phase transition, Journal of Physics C: Solid State Physics 15 (1982) 657-671.
  • [15] A. Lehoczky, D.A. Nelson, C.R. Whitsett, Elastic Constants of Mercury Selenide, Physical Review 188/3 (1969) 1069-1073.
  • [16] M. Cardona, R.K. Kremer, R. Lauck, G. Siegle, A. Muñoz, A.H. Romero, Electronic, vibrational, and thermodynamic properties of metacinnabar -HgS, HgSe, and HgTe, Physical Review B 80 (2009) 195204.
  • [17] F.E.H. Hassan, B.A. Shafaay, H. Meradji, S. Ghemid, H. Belkhir, M. Korek, Ab initio study of the fundamental properties of HgSe, HgTe and their HgSexTe1−x alloys, Physica Scripta 84 (2011) 065601.
  • [18] F. Boutaiba, A. Zaoui, M. Ferhat, Fundamental and transport properties of ZnX, CdX and HgX (X = S, Se, Te) compounds, Superlattices and Microstructures 46 (2009) 823-832.
  • [19] N. Ullah, G. Murtaza, R. Khenata, K.M. Wong, Z.A. Alahmed, Phase transition, electronic and optical properties of mercury chalcogenides under pressure, Phase Transitions 87 (2014) 571-581.
  • [20] J. Tan, G. Ji, X. Chen, L. Zhang, Y. Wen, The highpressure phase transitions and vibrational properties of zinc-blende XTe (X = Zn, Cd, Hg): Performance of local-density-approximation density functional theory, Computational Materials Science 48 (2010) 796-801.
  • [21] Z.W. Lu, D. Singh, H. Krakauer, Total-energy study of the equation of state of HgTe and HgSe, Physical Review B 39/14 (1989) 10154-10161.
  • [22] B.A. Shafaay, F.E.H. Hassan, M. Korek, First principle investigation of mercury chalcogenides and their HgSxSe1-x and HgSxTe1-x ternary alloys, Computational Materials Science 83 (2014) 107-113.
  • [23] D. Varshney, S. Shriya, R. Khenata, Structural phase transition and elastic properties of mercury chalcogenides”, Materials Chemistry and Physics 135 (2012) 365-384.
  • [24] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B 54 (1996) 11169-11186.
  • [25] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6 (1996) 15-20.
  • [26] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B 59 (1999) 1758-1775.
  • [27] P.E. Blöch, Projector augmented-wave method, Physical Review B 50 (1994) 17953-17979.
  • [28] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77 (1996) 3865-3868.
  • [29] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13 (1976) 5188-5192.
  • [30] R.W.G. Wyckoff, Crystal Structures, John Willey & Sons, 1963. [31] F. Birch, Finite Elastic Strain of Cubic Crystals, Physical Review 71 (1947) 809-824.
  • [32] S.O. Kart, T. Cagın, Elastic properties of Ni2MnGa from first-principles calculations, Journal of Alloys and Compounds 508 (2010) 177-183.
  • [33] Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, Edited by O. Madelung, Springer-Verlag, Berlin, 1982.
  • [34] K. Kumazaki, Elastic properties and ionicity of zerogap semiconductors, Physica Status Solidi A 33 (1976) 615.
  • [35] R.I. Cottam, G.A. Saunders, The elastic behaviour of mercury telluride, Journal of Physics and Chemistry of Solids 36 (1975) 187.
  • [36] O. Madelung, M. Schulz, H. Weiss (Eds), LandoltBörnstein-Group III Condensed Matter Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag, Berlin, 1982.
  • [37] D.C. Wallace, Thermodynamics of crystals, John Wiley & Sons, 1972.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed0f0ffb-9537-4ffb-a85c-5ed4a6c435be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.