Identyfikatory
Warianty tytułu
Konferencja
14th Summer Safety & Reliability Seminars - SSARS 2020, 26-30 September 2020, Ciechocinek, Poland
Języki publikacji
Abstrakty
The chapter has been intended to provide a comprehensive understanding on one class of reliability models used to perform probabilistic risk assessments. This is the class of binary-based conceptual models. This class of models allows assessing events occurrence, system states identification, states transitions and corresponding relevant probabilistic dynamic quantities. Besides, it allows the binarization of multistate systems so that ever bigger systems can be modelled, under conditions. The term “system” is used in its widest sense to include physical engineering systems, processes, and any structured set of actions/events. Consequently, the modelling capabilities cover sequential events and cycling transitions. The move from “risk management decision-making” to “risk-informed decision-making” paradigm has obviously created the right environment to develop and implement risk-based decision-making models in a variety of sectors. A brief and short non-exhaustive survey is presented identifying sectors using these models to assess risks in support to decision-making.
Słowa kluczowe
Rocznik
Strony
77--90
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
Bibliografia
- [1] Alagoz, O., Hsu, H., Schaefer, A. J. & Roberts, M. S. 2010. Markov decision processes: a tool for sequential decision-making under uncertainty, Medical Decision Making 30, 474-483.
- [2] Aughenbaugh, J. M. & Herrmann, J. W. 2008. Reliability-Based Decision Making: A Comparison of Statistical Approaches. https://user.eng.umd.edu/~jwh2/papers/JSTPMarch-2009.pdf (accessed 30 Aug 2020).
- [3] Bennett, C. C. & Hauser, K. 2013. Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach, Artificial Intelligence in Medicine 5, 9-19.
- [4] Berger, J. O. 1985. Statistical Decision Theory and Bayesian Analysis. Springer, 2nd edition.
- [5] Bogacz, R., Brown, E., Moehlis, J., Holmes, P. J., & Cohen, J. D. 2006. The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review 113(4), 700-765.
- [6] Chen, X., Bailly, G., Brumby, D. P., Oulasvirta, A. & Howes, A. 2015. The emergence of interactive behavior: A model of rational menu search, Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, New York, ACM, 4217-4226.
- [7] Chen, X., Starke, S. D., Baber, C. & Howes, A. 2017. A cognitive model of how people make decisions through interaction with visual displays, Proceedings of the 35th CHI Conference on Human Factors in Computing Systems, New York, ACM, 1205-1216.
- [8] Deneve, S. 2012. Making decisions with unknown sensory reliability. Frontiers in Neuroscience 6(75).
- [9] Drugowitsch, J., DeAngelis, G. C., Klier, E. M., Angelaki D. E. & Pouget A. 2014. Optimal multisensory decision-making in a reaction-time task. eLife.
- [10] Drugowitsch, J., Moreno-Bote, R. & Pouget, A. Optimal Decision-Making with Time-Varying Evidence Reliability. https://papers.nips.cc/paper/5540-optimal-decision-making-with-timevarying-evidence-reliability.pdf (accessed 30 Aug 2020).
- [11] Dubois, D. & Prade, H. M. 1988. Possibility Theory: an Approach to Computerized Processing of Uncertainty. Plenum Press, New York.
- [12] Eid, M. 2011. A general analytical solution for the occurrence probability of a sequence of ordered events following poison stochastic processes. Journal of Reliability Theory & Applications 2, RT&A# 03(22).
- [13] Eid, M. et al. 2015. Critical Infrastructures Protection (CIP) - coupled modelling for threats and resilience. SSARS 2015, Summer Safety and Reliability Seminars, Gdynia, Poland.
- [14] Eid, M. Transition Cycling Model. Private Class Notes (to be published).
- [15] Eid, M., Carreto-Fernandino, J. A. & Maisonnier, D. 2002. Integral approach to assess the availability/reliability of the fusion power reactor conceptual designs, Proceedings of 22nd Symposium on Fusion Technology, Helsinki, Finland.
- [16] FAA Report. 2009. Risk Management Handbook (FAA-H-8083-2) Note. U.S. Department of Transportation/Federal Aviation Administration/ Flight Standards Service. https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/faa-h-8083-2.pdf (accessed 30 Aug 2020).
- [17] Fleming, W. H. & Rishel, R. W. 1975. Deterministic and Stochastic Optimal Control. Stochastic Modelling and Applied Probability. Springer-Verlag.
- [18] García, A. C. & Papić, L. 2015. Reliability Modelling and Prediction, The Research Center of Dependability and Quality Management, Serbia.
- [19] Grabski F. 2009. Application of the Functions with Random Arguments in Reliability, Safety and Logistics. Wydawnictwo Komunikacji i Łączności, Warszawa, 44.
- [20] Grabski F. 2015. Semi-Markov Processes: Applications in Systems Reliability and Maintenance. Elsevier, Amsterdam - Boston - Heidelberd - London - New York - Oxford - Paris - San Diego - San Francisco - Sidney - Tokyo.
- [21] Grabski F. 2017. Nonhomogeneous Poisson process application to modelling accidents number at Baltic waters and ports. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 8(1), 39-46.
- [22] Grabski F. 2018. Optimization problem of reliability subject to constraint of availability in semi-Markov models of operation. AIP Conference Proceedings. Data Analysis and Applications 4: Financial Data Analysis and Methods; vol. 6; Big Data, Artificial Intelligence and Mata Analysis SET, A. Makrides, A. Karagrigoriou, Ch. H. Skidas (Eds.), London, ISTE LTD, 103-118.
- [23] Grangeat, A., Bony, A., Lapebie, E., Gilles, D. & Eid, M. 2016. The challenge of critical infrastructure dependency modelling and simulation for emergency management and decision making by the civil security authorities. In: Critical Information Infrastructures Security, 255-258.
- [24] Groen, F. J. & Mosleh, A. 2005. Foundations of probabilistic inference with uncertain evidence. International Journal of Approximate Reasoning 39(1), 49–83.
- [25] Hamilton, W. 2010. Cancer diagnosis in primary care. British Journal of General Practice 60, 121-128.
- [26] Insua, D. R. & Ruggeri, F. 2000. Robust Bayesian analysis. Springer, New York.
- [27] Johnson, S. G. The NLopt NonlinearOptimization Package. URL http://ab-initio.mit.edu/nlopt (accessed 30 Aug 2020).
- [28] Kołowrocki, K. 2014. Reliability of Large and Complex Systems. Elsevier, Amsterdam - Boston - Heidelberd - London - New York - Oxford - Paris - San Diego - San Francisco - Sidney - Tokyo.
- [29] NRC-ML1734. 2017. Reactor Consequence Analyses (SOARCA) Project Sequoyah Integrated Deterministic and Uncertainty Analyses. https://www.nrc.gov/docs/ML1734/ML17340B20 9.pdf (accessed 30 Aug 2020).
- [30] NUREG 1150, Severe Accident Risks: an Assessment for Five U.S. Nuclear Power Plants. https://www.nrc.gov/reading-rm/doc-collections/ nuregs/staff/sr1150/v1/sr1150v1-intro-and-part-1.pdf (accessed 30 Aug 2020).
- [31] Piegdoń, I., Tchórzewska-Cieślak, B. & Eid, M. 2015. Water distribution subsystem: system failure analysis on view of critical infrastructure resilience and preparedness enhancement and management. 48th ESReDA Seminar, Wrocław, Poland. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 6(3), 115-126.
- [32] Piegdoń, I., Tchórzewska-Cieślak, B. & Eid, M. 2018. Managing the risk of failure of the water supply network using the mass service system, Maintenance and Reliability 20(2), 280-287.
- [33] Pietrucha-Urbanik, K., Tchórzewska-Cieślak, B. & Eid, M. 2018. Cascading failure analysis in order to assess the resilience of a water supply system, Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 9(3), 55-64.
- [34] Pietrucha-Urbanik, K., Tchórzewska-Cieślak, B. & Eid, M. 2020. Water network-failure data assessment, MDPI - Energies 13(11), 2990.
- [35] Puterman, M. L. 2005. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc.
- [36] Roelen, A. L. C. Risk models and accident scenarios in the total aviation system. EU - 7th FP Project. GA-2012-314299-ASCOS https://ascos-project.eu/downloads/ascos_paper_roelen.pdf (accessed 30 Aug 2020).
- [37] Tchórzewska-Cieślak, B., Boryczko, K. & Eid, M. 2011. Failure scenarios in water supply system by means of fault tree analysis. Proceedings of ESREL 2011, Troyes, France.
- [38] WASH-1400. The Reactor Safety Study - Assessments of Accidents Risk. https://www.osti. gov/servlets/purl/7339389 (accessed 30 Aug 2020).
- [39] WASH-740. Hazards from Power Reactors https://www.osti.gov/opennet/servlets/purl/1047519/1047519.pdf (accessed 30 Aug 2020).
- [40] Wreathall, J. & Nemeth, C. 2004. Assessing risk: the role of probabilistic risk assessment (PRA) in patient safety improvement, Quality and Safety in Health Care. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1743824/ (accessed 30 Aug 2020).
- [41] Xue, J. & Yang, K. 1995. Dynamic reliability analysis of coherent multi-state systems. IEEE Transactions on Reliability 4(44), 683-688.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed0c41f0-eb24-426f-86a0-2b5e6ee87411
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.