PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties of composite material modified with amorphous calcium phosphate

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the study was to evaluate mechanical and physical properties of composite materials modified with amorphous calcium phosphate (ACP). Design/methodology/approach: The study used two flowable composite materials: an experimental composite material based on dimetacrylic resin filled with colloidal silica (ECM) and commercially available composite material (SDR/Dentsply). Materials were modified with the addition of ACP as a powder. Three testing groups were created, depending on the amount of ACP – 0.12 g, 0.24 g and 0.36 g – added to 2 g of the basic composite. The composite without ACP was the control group. Diametral Tensile Strength (DTS) was evaluated using Zwick-Roell Z020. Vickers hardness test (HV1/10) was performed using the HV1/10 method in the ZHVμ (Zwick-Roell) hardness tester. The measurements of shrinkage stress that arose during polymerisation of the tested materials were conducted with the use of the FL200/Gunt circular polariscope. Findings: In both composites modified with ACP the decrease of DTS was observed. ACP addition to experimental composite increased its hardness. Addition of 5.67 wt% of ACP to SDR resulted in significant decrease of its hardness. For both tested materials, the highest shrinkage stress was observed in composites modified with 5.67 wt% ACP addition. The lowest shrinkage stress was observed in ECM modified with 15.25 wt% ACP and SDR composite containing 10.72 wt% ACP. Research limitations/implications: Additional investigations are needed to define the exact influence of addition ACP to composite materials on their mechanical and physiochemical properties. Originality/value: In order to improve biological behaviour of composite materials it is possible to modify those materials with the addition of remineralising agents like ACP.
Rocznik
Strony
22--28
Opis fizyczny
Bibliogr. 28 poz., tab.
Twórcy
  • Department of General Dentistry, Medical University of Łódź, ul. Pomorska 251, 92-213 Łódź, Poland
  • Laboratory of Material Testing, Medical University of Łódź, ul. Pomorska 251, 92-213 Łódź, Poland
autor
  • Laboratory of Material Testing, Medical University of Łódź, ul. Pomorska 251, 92-213 Łódź, Poland
  • Department of General Dentistry, Medical University of Łódź, ul. Pomorska 251, 92-213 Łódź, Poland,
  • Department of General Dentistry, Medical University of Łódź, ul. Pomorska 251, 92-213 Łódź, Poland,
Bibliografia
  • [1] J. Hicks, F. Garcia-Godoy, C. Flaitz, Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (Part 2), The Journal of Clinical Pediatric Dentistry 28 (2004) 119-124.
  • [2] D. Gurunathan, S. Somasundaram,S.A. Kumar, Casein phosphopeptide-amorphous calcium phosphate: a remineralizing agent of enamel, Australian Dental Journal 57/4 (2012) 404-408.
  • [3] D. Skrtic, J.M. Antonucci, Bioactive polymeric composites for tooth mineral regeneration: physiochemical and cellular aspects, Journal of Functional Biomaterials 2 (2011) 271-307.
  • [4] J.M. Ten Cate, Current concepts on the theories of the mechanism of action of fluoride, Acta Odontologica Scandinavica 57/6 (1999) 325-329.
  • [5] E.C. Reynolds, F. Cai, P. Shen, G.D. Walker, Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugar-free chewing gum, Journal of Dental Research 82/3 (2003) 206-211.
  • [6] M. Oshiro, K. Yamaguchi, T. Takamizana, H. Inage, T. Watanabe, A. Irokawa, S. Ando, M. Miyazaki, Effect of CPP–ACP paste on tooth mineralization: an FE-SEM study, Journal of Oral Science 49/2 (2007) 115-120.
  • [7] D. Skrtic, J.M. Antonucci, E.D. Eanes, Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration, Journal of Research - National Institute of Standards and Technology 108 (2003) 167-182.
  • [8] S. Timoshenko, J.N. Goodier, Theory of Elasticity, New York, McGraw-Hill, 1951.
  • [9] P. Malara, Z. Czech, W. Świderski, Degree of conversion of dental composite materials in relation to different light-curing parameters, Journal of Achievements in Materials and Manufacturing Engineering 70/2 (2015) 60-69.
  • [10] B.W. Darvell, Materials Science for Dentistry, Woodhead Publishing Limited and CRC Press LLC, 2009, ninth edition.
  • [11] A. Pusz, M. Szymiczek, K. Michalik, Ageing process influence on mechanical properties of polyamide - glass composites applied in dentistry, Journal of Achievements in Materials and Manufacturing Engineering 38/1 (2010) 49-55.
  • [12] A. Pusz, M. Szymiczek, K. Michalik, Topography and the structure of the surface of polyamide - glass composites after the ageing process, Journal of Achievements in Materials and Manufacturing Engineering 44/1 (2011) 42-49.
  • [13] F.H.B. Aguiar, T.R.V. e Oliveira, D.A.N.L. Lima, L.A.M.S. Paulillo, J.R. Lovadino, Effect of light curing modes and ethanol immersion media on the susceptibility of a microhybrid composite resin to staining, Journal of Applied Oral Science 15/2 (2007) 105-109.
  • [14] A.A. Razooki, Al-Shekhli, A. Isra’a, I.A. Al-Aubi, Influence of composite restorative materials composition on their diametral tensile strength values, Journal of International Dental & Medical Research 2/3 (2009) 67-70.
  • [15] P. Malara, Z. Czech, W. Świderski, The influence of light curing parameters on wear resistance of selected resin-based dental composites, Journal of Achievements in Materials and Manufacturing Engineering 64/2 (2014) 62-71.
  • [16] S.V. Dorozhkin, Amorphous calcium orthophosphates: nature, chemistry and biomedical applications, International Journal of Materials and Chemistry 2/1 (2012) 19-46.
  • [17] S.Y. Lee, W.F. Regnault, J.M. Antonucci, D. Skrtic, Effect of particle size of an amorphous calcium phosphate filler on the mechanical strength and ionrelease of polymeric composites, Journal of Biomedical Material Research 80B (2007) 11-17.
  • [18] D. Skrtic, J.M. Antonucci, E.D. Eanes, Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration, Journal of Research of the National Institute of Standards and Technology 108 (2003) 167-182.
  • [19] J.F. McCabe, R.W. Wassell, Hardness of model dental composites - the effect of filler volume fraction and silanation, Journal of Materials Science: Materials in Medicine 10/5 (1999) 291-294.
  • [20] J.N.R. O’Donnell, D. Skrtic, Degree of vinyl conversion, polymerization shrinkage and stress development in experimental endodontic composites, Journal of Biomimetics Biomaterials and Tissue Engineering 4 (2009) 1-12.
  • [21] K. Drzewiecka, J. Kleczewska, M. Krasowski, B. Łapiska, J. Sokołowski, The influence of amorphous calcium phosphate addition on mechanical properties of the experimental light-cured dental composite, Dental and Medical Problems 53/1 (2016) 34-40 (in Polish).
  • [22] M. Hosseinalipour, J. Javadpour, H. Rezaie, T. Dadras, A.N. Hayati, Investigation of mechanical properties of experimental Bis-GMA/TEGDMA dental composite resins containing various mass fractions of silica nanoparticles, Journal of Prosthodontics 19/2 (2010) 112-117.
  • [23] D. Marovic, Z. Tarle, K.A. Hiller, R. Müller, M. Rosentritt, D. Skrtic, G. Schmalz, Reinforcement of experimental composite materials based on amorphous calcium phosphate with inert fillers, Dental Materials 30/9 (2014) 1052-1060.
  • [24] M.S. Park, E.D. Eanes, J.M. Antonucci, D. Skrtic, Mechanical properties of bioactive amorphous calcium phosphate/methacrylate composites, Dental Materials 14/2 (1998) 137-141.
  • [25] L.F.J. Schneider, L.M. Cavalcante, N. Silikas, Shrinkage stresses generated during resin-composite applications: A review, Journal of Dental Biomechanics 1/1 (2010) 131630.
  • [26] D. Cakir, R. Sergent, J.O. Burgess, Polymerization Shrinkage-A Clinical Review, Inside Dentistry 3/8 (2007).
  • [27] J.A. Dominguez, B.F. Bittencourt, P.V. Farago, L.A. Pinheiro, O.M.M. Gomes,Shrinkage stress of resin composites: effect of material composition- systematic review, Brazilian Dental Science 17/3 (2014) 60-66.
  • [28] M. Domarecka, K. Sokołowski, M. Krasowski, M. Łukomska-Szymaska, J. Sokołowski, The shrinkage stress of modified flowable dental composites, Dental and Medical Problems 52/4 (2015) 424-433 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed0a10bf-bfdf-4460-b737-6300d060455d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.