PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Liquefied Natural Gas – The Future Fuel for Shipping or Cul-de-sac

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper analyses the reasons for the interest in natural gas as a potential marine fuel to replace the existing fuels derived from crude oil. The increase in environmental awareness and the effects of human activity caused the process of searching for more environmentally friendly fuels. Naturally, interest has been shifted to a well-known energy source commonly found on Earth in quantities much more considerable than crude oil. This fuel, in the form of liquefied natural gas, seems to be an attractive substitute for the currently dominant types of marine fuels. The technologies of its extraction, liquefaction, storage and transport were mastered, and marine engines were adopted for its combustion as dual-fuel engines. The regulations introduced by the International Maritime Organization and the European Parliament, forcing the reduction of emissions of harmful substances into the atmosphere from the combustion of marine fuels, require taking action to meet them. The proposals for individual next 30 years are given. Due to the introduction of regulations to reduce carbon dioxide emissions, it is necessary to switch to fuels with a lower or zero carbon content or biofuels recognised as more environmentally friendly. Due to only 25% lower carbon content in methane with its higher lower heating value, it is possible to reduce the direct emission from this gas by about 30%. However, methane leaks occur in the processes from natural gas extraction to the energy effect in engines as a fuel, significantly worsening its image as an ecological fuel. Researches indicate that with current technologies, natural gas should not be recognised as an ecological fuel until gas leaks are significantly reduced. The article justifies why LNG should be considered a transient marine fuel, with the need to switch to other synthetic fuels, ammonia, and hydrogen.
Rocznik
Tom
Strony
15--25
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
Bibliografia
  • Biernat, K. et al. (2021). Biological Methods in Biodiesel Production and Their Environmental Impact. Appl. Sci., 11(22), 10946, DOI: 10.3390/app112210946 (accessed on 09 February 2022).
  • BP (2021), Statistical Review of World Energy, 70th edition, https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (accessed on 07 February 2022).
  • Comer, B., Osipova, L. (2021). Accounting well-to-wake carbon dioxide equivalent emission in maritime transportation climate policies. The International Council on Clean Transportation, https://theicct.org/wp-content/uploads/2021/06/Well-to-wake-co2-mar2021-2.pdf (accesed on 09 February 2022).
  • Corres, A.J. (2017). Atmospheric Pollution and the LNG as Ship Fuel. CEO series, Presentation, https://www.researchgate.net/publication/316351848_Atmospheric_Pollution_and_the_LNG_as_Ship_Fuel (accessed on 07 February 2022).
  • Directive (2015). 2015/757 of the European Parliament and of the Council of 29 April 2015, as amended by Delegated Regulation 2016/2071 on monitoring, reporting and verification of carbon dioxide emissions from maritime transport, and amended Directive 2009/16/EC.
  • Directive (2018). 2018/410 of the European Parliament and of the Council of 14 March 2018 amending Directive 2003/87/EC To enhance cost-effective emission reductions and low-carbon investments, and Decision (EU) 2015/1814.
  • DNV GL (2018), Bio diesel emissions depend on the production method.
  • ECOFYS (2019), 2030 Transport Decarbonisation Options, https://platformduurzamebiobrandstoffen.nl/wp-content/uploads/2020/04/2019_Ecofys_Navigant_2030-Transport-decarbonisation-options.pdf (accessed on 09 February 2022).
  • Hamelinck, C. et al. (2019). Possibilities of Transport Decarbonising by 2030. ECOFYS: Utrecht, The Netherlands.
  • Herdzik, J. (2012). Aspects of Using LNG as a Marine Fuel. Journal of KONES, 19(2). 201-210.
  • Herdzik, J. (2013). Consequences of Using LNG as a Marine Fuel. Journal of KONES, 20(2), 159-166.
  • Herdzik, J. (2018a). Methane Slip during Cargo Operations on LNG Carriers and LNG Fueled Vessels. New Trends in Production Engineering, 1(1), 293-300.
  • Herdzik, J. (2018b). The impact of methane slip from vessels on environment. Journal of Kones, 25(2). 149-155.
  • Herdzik, J. (2021). Decarbonisation of Marine Fuels – the Future of Shipping. Energies, 14, 4311, DOI: 10.3390/en14144311 (accessed on 07 February 2022).
  • IGC Code (2016), International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk. IMO publication.
  • IMO (2018) MEPC 72/INF.5, Reduction of GHG from ships. Understanding CO2 emissions and challenges in assessing the operational efficiency for ships.
  • IMO (2019), http://www/imo/org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/GHG-Emissions.aspx (accessed on 22 February 2022).
  • IMO Action (2018), To Reduce Greenhouse Gas Emission From International Shipping. IMO publication 2018.
  • Kuczyński, S. et al. (2020). Impact of Natural Gas Composition Changes on Methane Number as a Fuel Quality Requirement, Energies, 13, 5060, DOI: 10.3390/en 13195060 (accessed on 07 February 2022).
  • Liquefied Natural Gas, Safety and Operational Matters, http://www.liquefiedgascarrier.com/LNG.html (accessed on 07 February 2022).
  • MAN (2013). Propulsion Trends in LNG Carriers (Two Stroke Engines), MAN Diesel & Turbo, Copenhagen 2013.
  • Ocktaeck, L., Sangijn, Y. (2021). Comparative Life Cycle Assessment of Liquefied Natural Gas and Marine Fuel from Well to Hull, Transactions of the Korean hydrogen and new energy society, 32(2), 127-133.
  • PRS (2021), Przepisy nadzoru konwencyjnego statków morskich, część IX, Ochrona Środowiska, (in Polish), Polish Register of Shipping, Gdańsk, 2021.
  • SIGGTO, (2016), Liquefied Gas Handling Principles on Ships and in Terminals (LGHP4), Witherby Seamanship, ISBN 9781856097147.
  • Stenersen, D., Thonstad, O. (2017). GHG and NOx emissions from gas fuelled engines, SINTEF Ocean AS Maritim, https://midc.be/wp-content/uploads/2018/06/methane-slip-from-gas-engines-mainreport-1492296.pdf (accessed on 22 February 2022).
  • TGE (2019), LNG fuel gas systems, TGE Marine Gas Engineering GmbH (brochure), https://www.tge-marine.com/wp-content/uploads/01-Broschuere_LNG.pdf (accessed on 22 February 2022).
  • Thomson, H., Corbett, J.J., Winebrake, J.J. (2015). Natural gas a marine fuel. Energy Policy, 87, 153-167.
  • U.S. EIA (2020), EIA Report, Annual Energy Outlook 2020, U.S. Energy Information Administration, https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf (accessed on 07 February 2022).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ed095b9f-9e74-472e-9fd4-afe77de0ba53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.