Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper explores the potential of additive manufacturing (AM), experiments and simulations to develop a personalized shoe sole, with cellular topology used as the insert that minimizes the plantar pressure during running. Five different topologies were manufactured by Fused Filament Fabrication 3D printing technique using thermoplastic polyurethane TPU 95 filaments and tested experimentally and using FEA under compression conditions. The error between the maximum peak force and specific energy absorbed (SEA) from the model and experiment were less than 4.0 % and 6.0 %, respectively. A deformable FE foot model was developed, which was validated against data from the literature on balanced standing and the landing impact test carried out in the study. For the first case, the predicted maximum pressure (Ppeak = 0.20 MPa) was positioned between the data presented in previous papers (0.16 MPa ÷ 0.30 MPa). In the second case, the experimentally measured and numerically predicted force peak values were nearly identical: 1760 N and 1720 N, respectively, falling with the range of 2.2 ÷ 2.5 BW similarly to other studies. Finally, a shoe sole design was proposed based on these topologies, which was simulated in the rearfoot impact to investigate the deformation of the sole and its influence on the foot plantar pressure peak and its distribution. The findings indicated that the sole with cellular structure could drastically reduce plantar pressure and improve overall footwear performance. This research provides valuable guidance and insights for designing, modelling, and simulating customized shoe sole manufactured using the 3D printing technique.
Wydawca
Czasopismo
Rocznik
Tom
Strony
858--873
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
autor
- Military University of Technology, Faculty of Mechanical Engineering, Institute of Mechanics & Computational Engineering, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Institute of Mechanics & Computational Engineering, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechatronics, Armament & Aerospace, Institute of Armament Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechatronics, Armament & Aerospace, Institute of Armament Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
Bibliografia
- [1] Lieberman DE, Venkadesan M, Werbel WA, Daoud AI, Andrea SD, Davis IS, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 2010;463:531-5. https://doi.org/10.1038/nature08723.
- [2] Heiml E. Development of a Design Approach for Individualised 3D-Printed Cellular Polymeric Shoe Soles. Johannes Kepler University Linz; 2021.
- [3] Zolfagharian A, Lakhi M, Ranjbar S, Bodaghi M. Custom shoe sole design and modeling toward 3D printing. Int J Bioprinting 2021;7(1-10). https://doi.org/10.18063/ijb.v7i4.396.
- [4] Mohamad MR, Daud NA. The effect of sole design on foot stress distribution to runner. J Hum Centered Technol 2023;2(35-40). https://doi.org/10.11113/humentech.v2n2.54.
- [5] Amza C, Zapciu A, Popescu D. 3D-Printed shoe last for bespoke shoe manufacturing. MATEC Web Conf 2019;290:1-6. https://doi.org/10.1051/matecconf/201929004001.
- [6] Xie J, Zhou Z, Luo T, Pang H, Meng X, Zhou F. Study on design and additive manufacturing of customized bionic sports sole for the elderly. IEEE Access 2021;9: 69830-8. https://doi.org/10.1109/ACCESS.2021.3078162.
- [7] Silverman J. Development and Testing of Mycelium-Based Composite Materials for Shoe Sole Applications. University of Delaware; 2018.
- [8] Dong G, Tessier D, Zhao YF. Design of shoe soles using lattice structures fabricated by additive manufacturing. Proc Int Conf Eng Des ICED 2019;2019-Augus:719-28. 10.1017/dsi.2019.76.
- [9] Restrepo D, Mankame ND, Zavattieri PD. Programmable materials based on periodic cellular solids. Part I: experiments. Int J Solids Struct 2016;100-101: 485-504. https://doi.org/10.1016/j.ijsolstr.2016.09.021.
- [10] Low JH, Chee PS, Lim EH, Ganesan V. Design of a wireless smart insole using stretchable microfluidic sensor for gait monitoring. Smart Mater Struct 2020;29. 10.1088/1361-665X/ab802c.
- [11] Shih KS, Jhou SY, Hsu WC, Hsu CC, Chen JW, Yeh JC, et al. A biomechanical investigation of athletic footwear traction performance: Integration of gait analysis with computational simulation. Appl Sci 2020;10. https://doi.org/10.3390/ app10051672.
- [12] Wang D, Li Z, Dey N, Ashour AS, Moraru L, Simon Sherratt R, et al. Deep-segmentation of plantar pressure images incorporating fully convolutional neural networks. Biocybern Biomed Eng 2020;40:546-58. https://doi.org/10.1016/j. Bbe.2020.01.004.
- [13] Nishiwaki T, Nonogawa M. Application of topological optimization technique to running shoe designing. Procedia Eng 2015;112:314-9. https://doi.org/10.1016/j.proeng.2015.07.251.
- [14] Hsu YC, Gung YW, Shih SL, Feng CK, Wei SH, Yu CH, et al. Using an optimization approach to design an insole for lowering plantar fascia stress - a finite element study. Ann Biomed Eng 2008;36:1345-52. https://doi.org/10.1007/s10439-008-9516-x.
- 15] Spahiu T, Almeida H, Ascenso RMT, Vitorino L, Marto A. Optimization of shoe sole design according to individual feet pressure maps. Comput Ind 2021;125:103375. https://doi.org/10.1016/j.compind.2020.103375.
- [16] Song Y, Cen X, Zhang Y, Bíró I, Ji Y, Gu Y. Development and validation of a subject-specific coupled model for foot and sports shoe complex: a pilot computational study. Bioengineering 2022;9. https://doi.org/10.3390/bioengineering9100553.
- [17] Xu J, Tu Z, Zhang S, Tan J, Wang G. Customized design for ergonomic products via additive manufacturing considering joint biomechanics. Chinese J Mech Eng Addit Manuf Front 2023;2:100085. https://doi.org/10.1016/j.cjmeam.2023.100085.
- [18] Zhou Q, Niu W, Yick KL, Gu B, Sun Y. Numerical simulation of the effect of different footwear midsole structures on plantar pressure distribution and bone stress in obese and healthy children. Bioengineering 2023;10. https://doi.org/ 10.3390/bioengineering10111306.
- [19] Cheng H, Liu B, Liu M, Cao W. Design of three-dimensional Voronoi strut midsoles driven by plantar pressure distribution. J Comput Des Eng 2022;9:1410-29. https://doi.org/10.1093/jcde/qwac060.
- [20] Rico-baeza G, Gerardo IP, Alberto L, Cuan-urquizo E, Camarillo-g KA. Additively manufactured foot insoles using body-centered cubic (BCC) and triply periodic minimal surface (TPMS) cellular structures. Appl Sci 2023;13:12665. https://doi. org/10.3390/app132312665.
- [21] Ma Z, Lin J, Xu X, Ma Z, Tang L, Sun C, et al. Design and 3D printing of adjustable modulus porous structures for customized diabetic foot insoles. Int J Light Mater Manuf 2019;2:57-63. https://doi.org/10.1016/j.ijlmm.2018.10.003.
- [22] Cheung JTM, Zhang M. A 3-dimensional finite element model of the human foot and ankle for insole design. Arch Phys Med Rehabil 2005;86:353-8. https://doi. org/10.1016/j.apmr.2004.03.031.
- [23] Qiu TX, Teo EC, Yan YB, Lei W. Finite element modeling of a 3D coupled foot-boot model. Med Eng Phys 2011;33:1228-33. https://doi.org/10.1016/j.medengphy.2011.05.012.
- [24] Cho JR, Park SB, Ryu SH, Kim SH, Lee SB. Landing impact analysis of sports shoes using 3-D coupled foot-shoe finite element model. J Mech Sci Technol 2009;23: 2583-91. https://doi.org/10.1007/s12206-009-0801-x.
- [25] Kamal Z, Hekman EG, Verkerke JG. A combined musculoskeletal and finite element model of a foot to predict plantar pressure distribution A combined musculoskeletal and fi nite element model of a foot to predict plantar pressure distribution. Biomed Phys Eng Express 2024;10:035024. 10.1088/2057-1976/ad233d.
- [26] Hannah I, Harland A, Price D, Schlarb H, Lucas T. Evaluation of a kinematically-driven finite element footstrike model. J Appl Biomech 2016;32:301-5. https:// doi.org/10.1123/jab.2015-0002.
- [27] Li S, Zhang Y, Gu Y, Ren J. Stress distribution of metatarsals during forefoot strike versus rearfoot strike: a finite element study. Comput Biol Med 2017;91:38-46. https://doi.org/10.1016/j.compbiomed.2017.09.018.
- [28] Qian Z, Ren L, Ding Y, Hutchinson JR, Ren L. A dynamic finite element analysis of human foot complex in the sagittal plane during level walking. PLoS One 2013;8: 1-10. https://doi.org/10.1371/journal.pone.0079424.
- [29] Kim SH, Cho JR, Choi JH, Ryu SH, Jeong WB. Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition. Interact Multiscale Mech 2012;5:75-90.
- [30] Majdak M, Baranowski P, Małachowski J. Numerical studies of the energy absorption capacities and deformation mechanisms of 2D cellular topologies. Arch Civ Mech Eng 2024;5. https://doi.org/10.1007/s43452-024-00926-5.
- [31] Płatek Paweł and Baranowski PJJ, Kucewicz M. Problems of deformation and damage studies of additively manufactured regular cellular structures. Handb Damage Mech Nano to Macro Scale Mater Struct, Springer International Publishing Cham 2022:215-47.
- [32] Lakes RS. Design considerations for materials with negative Poisson’s ratios. J Mech Des 1993;115:696-700. https://doi.org/10.1115/1.2919256.
- [33] Mohammadi H, Ahmad Z, Petru M, Mazlan SA, Faizal Johari MA, Hatami H, et al. An insight from nature: Honeycomb pattern in advanced structural design for impact energy absorption. J Mater Res Technol 2023;22:2862-87. https://doi.org/ 10.1016/j.jmrt.2022.12.063.
- [34] Yin H, Zhang W, Zhu L, Meng F, Liu J, Wen G. Review on lattice structures for energy absorption properties. Compos Struct 2023;304:116397. https://doi.org/ 10.1016/j.compstruct.2022.116397.
- [35] Sun Y, Zhou Q, Niu W, Zhang S, Yick KL, Gu B, et al. 3D printed sports shoe Midsoles: enhancing comfort and performance through finite element analysis of negative Poisson’s ratio structures. Mater Des 2024;245:113292. https://doi.org/ 10.1016/j.matdes.2024.113292.
- [36] Leung MS, Yick KL, Sun Y, Chow L, Ng S. 3D printed auxetic heel pads for patients with diabetic mellitus. Comput Biol Med 2022;146:105582. https://doi.org/ 10.1016/j.compbiomed.2022.105582.
- [37] Kucewicz M, Baranowski P, Małachowski J, Popławski A, Płatek P. Modelling, and characterization of 3D printed cellular structures. Mater Des 2018;142:177-89. https://doi.org/10.1016/j.matdes.2018.01.028.
- [38] Kucewicz M, Baranowski P, Stankiewicz M, Konarzewski M, Płatek P, Małachowski J. Modelling and testing of 3D printed cellular structures under quasistatic and dynamic conditions. Thin-Walled Struct 2019;145:106385. https://doi. org/10.1016/j.tws.2019.106385.
- [39] Cristiana M, Popescu D, Stochioiu C, Baciu F, Hadar A. Compressive behavior of thermoplastic polyurethane with an active agent foaming for 3D-printed customized comfort insoles. Polym Test 2024;137:108517. https://doi.org/ 10.1016/j.polymertesting.2024.108517.
- [40] Iacob M, Popescu D, Alexandru TG. Printability Of thermoplastic polyurethane with low shore a hardness in the context of customized insoles production. UPB Sci Bull Ser D Mech Eng 2024;86:95-106.
- [41] Iacob MC, Popescu D, Baciu F. Effect of process parameters on the hardness of 3Dprinted thermoplastic polyurethane that includes foaming agent. Mater Plast 2023; 60(144-54). https://doi.org/10.37358/MP.23.4.5694.
- [42] Płatek P, Rajkowski K, Cieplak K, Sarzyński M, Małachowski J, Woźniak R, et al. Deformation process of 3D printed structures made from flexible material with different values of relative density. Polymers (Basel) 2020;12. https://doi.org/10.3390/POLYM12092120.
- [43] Zhang S, Zhang Y, Zhang X, Yu C, Xu K, Qin J, et al. 3D-printed thermoplastic polyurethane/polyvinylidene fluoride gradient stiffness and hierarchical cellular structures with tailored energy absorption behavior. Addit Manuf 2024;83:104062. https://doi.org/10.1016/j.addma.2024.104062.
- [44] Center, Toyota Labs R& D. Documentation: Total Human Model for Safety (THUMS) AM50 Pedestrian/Occupant Model Academic Version 4.02_20150527. 2015.
- [45] Cheung JTM, Zhang M, Leung AKL, Fan YB. Three-dimensional finite element analysis of the foot during standing - a material sensitivity study. J Biomech 2005; 38:1045-54. https://doi.org/10.1016/j.jbiomech.2004.05.035.
- [46] Akrami M, Qian Z, Zou Z, Howard D, Nester CJ, Ren L. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions. Biomech Model Mechanobiol 2018;17:559-76. https://doi.org/10.1007/s10237-017-0978-3.
- [47] Burns GT, Gonzalez R, Zendler JM, Zernicke RF. Bouncing behavior of sub-four minute milers. Sci Rep 2021;11:1-15. https://doi.org/10.1038/s41598-021-89858-1.
- [48] Yang Z, Cui C, Wan X, Zheng Z, Yan S, Liu H, et al. Design feature combinations effects of running shoe on plantar pressure during heel landing: a finite element analysis with Taguchi optimization approach. Front Bioeng Biotechnol 2022;10: 1-13. https://doi.org/10.3389/fbioe.2022.959842.
- [49] Wang Y, Li Z, Wong DW, Zhang M. Effects of ankle arthrodesis on biomechanical performance of the entire foot. PLoS One 2015;10:e0134340.
- [50] Antunes PJ, Dias GR, Coelho AT, Rebelo F, Pereira T. Non-Linear Finite Element Modelling of Anatomically Detailed 3D Foot Model. 2008.
- [51] Ozen M, Sayman O, Havitcioglu H. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex. Acta Bioeng Biomech 2013;15:19-27. https://doi.org/10.5277/abb130303.
- [52] Davia-Aracil M, Hinojo-Pérez JJ, Bertazzo M, Orgilés-Calpena E, Maestre-López MI, Llobell-Andrés C. Design and functionalisation of shoe outsoles with antimicrobial properties using additive manufacturing technologies: industrial applications. Comput Ind 2020;121. https://doi.org/10.1016/j.compind.2020.103246.
- [53] Peng Y, Wang Y, Wong DW, Chen TL, Chen SF. Different Design Feature Combinations of Flatfoot Orthosis on Plantar Fascia Strain and Plantar Pressure: A Muscle-Driven Finite Element Analysis With Taguchi Method 2022;10:1-9. 10.3389/fbioe.2022.853085.
- [54] Li Y, Leong KF, Gu Y. Construction and finite element analysis of a coupled finite element model of foot and barefoot running footwear. Proc Inst Mech Eng Part P J Sport Eng Technol 2019;233:101-9. https://doi.org/10.1177/1754337118803540.
- [55] Uhao FMO, Unjie JLI, Ang ZUY, Hou SHZ, Ehr MIB. In Vivo Measurement of Plantar Tissue Characteristics and Its Indication for Foot Modeling 2019;47: 2356-71. https://doi.org/10.1007/s10439-019-02314-0.
- [56] Wang Y, Li Z, Wong DW. Finite element analysis of biomechanical effects of total ankle arthroplasty on the foot. J Orthop Transl 2018;12:55-65. https://doi.org/ 10.1016/j.jot.2017.12.003.
- [57] Mao R, Guo J, Luo C, Fan Y, Wen J, Wang L. Biomechanical study on surgical fixation methods for minimally invasive treatment of hallux valgus 2017:1-6. https://doi.org/10.1016/j.medengphy.2017.04.010.
- [58] Peng Y, Wong DW, Wang Y, Chen TL, Zhang G. Computational models of flatfoot with three-dimensional fascia and bulk soft tissue interaction for orthosis design. Med Nov Technol Devices 2021;9:100050. https://doi.org/10.1016/j. Medntd.2020.100050.
- [59] Giddins VL, Beaupre G, Whalen R, Carter D. Calcaneal loading during walking and running. Med Sci Sports Exerc 2010;32:627-34. https://doi.org/10.1097/00005768-200003000-00012.
- [60] Lieberman DE, Venkadesan M, Werbel WA, Daoud AI, Dandrea S, Davis IS, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 2010;463:531-5. https://doi.org/10.1038/nature08723.
- [61] Song Y, Cen X, Chen H, Sun D, Munivrana G. The influence of running shoe with different carbon-fiber plate designs on internal foot mechanics: a pilot computational analysis. J Biomech 2023;153:111597. https://doi.org/10.1016/j. Jbiomech.2023.111597.
- [62] Mo F, Li Y, Li J, Zhou S, Yang Z. A three-dimensional finite element foot-ankle model and its personalisation methods analysis. Int J Mech Sci 2022;219:107108. https://doi.org/10.1016/j.ijmecsci.2022.107108.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecf4c4ba-17dd-4bd2-90ae-92671dcf5a2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.