PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydraulic gradient prediction for solid-water mixture flow through horizontal pipelines of different diameters and roughness and solids concentrations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In wastewater treatment plants, large pumps are often used to accommodate unknown hydraulic properties of solid-water mixture flow. The use of large pumps translates into higher purchasing and operating costs. Wastewater mixture is pumped with solids of different types and concentrations through pipelines. The design of these ducts is mainly based on the hydraulic laws of solid-water mixture which is represented by a corrected friction coefficient corresponding to the concentration of solids in water. This paper experimentally studies hydraulic properties of solid-water mixtures in pipelines by the varying Froude number (Fr), which represents the velocity mixture, solid concentration, pipeline diameter and pipeline material type-roughness coefficient. The experiments have been conducted in the wastewater treatment plant where six solid concentrations can be found ranging from 2 to 12% by weight. The pipe diameter ranges between 100 to 300 mm. It has been found that both the friction coefficient and the hydraulic gradient ameliorate with the increase of the pipeline roughness and the solids concentration in the water mixture, whereas the Fr drop with the diameter of the pipeline. The results are translated into curves and equations to predict the corrected pipeline friction coefficient and the hydraulic gradient of the solid-water mixture flow through horizontal pipelines at various solids concentrations, roughness and diameters.
Wydawca
Rocznik
Tom
Strony
267--272
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Umm Al-Quara University, College of Engineering and Islamic Architecture, Department of Civil Engineering P.O. Box 715, Makkah, Saudi Arabia
Bibliografia
  • BAUDEZ J.C., SLATTER P., ESHTIAGHI N. 2013. The impact of temperature on the rheological behaviour of anaerobic digested sludge. Chemical Engineering Journal. Vol. 215–216 p. 182–187. DOI 10.1016/j.cej.2012.10.099.
  • ELTOUKHY M.A.R., ALKHUZAI K.A., ELKASHEF A. 2018. Head losses ratio prediction for hydraulic sludge transport in horizontal pipes for different concentrations and pipeline sizes. Australian Journal of Basic and Applied Sciences. Vol. 12(11) p. 92–101. DOI 10.22587/ajbas.2018.12.11.19.
  • ESHTIAGHI N., MARKIS F., YAP S.D., BAUDEZ J.C., SLATTER P. 2013. Rheological characterisation of municipal sludge: A review. Water Research. Vol. 47. Iss. 15 p. 5493–5510. DOI 10.1016/j.watres.2013.07.001.
  • FARNO E., BAUDEZ J.C., PARTHASARATHY R., ESHTIAGHI N. 2015. Impact of temperature and duration of thermal treatment on different concentrations of anaerobic digested sludge: Kinetic similarity of organic matter solubilisation and sludge rheology. Chemical Engineering Journal. Vol. 273 p. 534–542. DOI 10.1016/j.cej.2015.03.097.
  • FARNO E., COVENTRY K., SLATTER P., ESHTIAGHI N. 2018. Role of regression analysis and variation of rheological data in calculation of pressure drop for sludge pipelines. Water Research. Vol. 137 p. 1–8. DOI 10.1016/j.watres.2018.02.059.
  • GROZDEK M., KHODABANDEH R., LUNDQVIST P. 2009. Experimental investigation of ice slurry flow pressure drop in horizontal tubes. Experimental Thermal and Fluid Science. Vol. 33. Iss. 2 p. 357–370. DOI 10.1016/j.expthermflusci. 2008.10.003.
  • HAN S.M., KIM Y.J., WOO N.S., HWANG Y.K. 2008. A study on the solid-liquid 2 phase helical flow in an inclined annulus. Journal of Mechanical Science and Technology. Vol. 22 p. 1914–1920. DOI 10.1007/s12206-008-0732-y.
  • JIN B., WILÉN B.M., LANT P. 2003. A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge. Chemical Engineering Journal. Vol. 95. Iss. 1–3 p. 221–234. DOI 10.1016/S1385-8947 (03)00108-6.
  • KAJJUMBA G.W., AYDIN S., GÜNEYSU S. 2018. Adsorption isotherms and kinetics of vanadium by shale and coal waste. Adsorption Science and Technology. Vol. 36 p. 936–952. DOI 10.1177/0263617417733586.
  • KAJJUMBA G.W., YILDIRIM E., AYDIN S., EMIK S., AĞUN T., OSRA F., WASSWA J. 2019. A facile polymerisation of magnetic coal to enhanced phosphate removal from solution. Journal of Environmental Management. Vol. 247 p. 356–362. DOI 10.1016/j.jenvman.2019.06.088.
  • KIM C., LEE M., HAN C. 2008. Hydraulic transport of sand-water mixtures in pipelines. Part I. Experiment. Journal of Mechanical Science and Technology. Vol. 22 p. 2534–2541. DOI 10.1007/s12206-008-0811-0.
  • KLØVE B., XU S., LINDAHL A., WÖRMAN A., SØVIK A.K. 2005. A study of K variability and its effect on solute transport in subsurface-flow sand filters by measurement and modelling. Journal of Environmental Science and Health, Part A. Toxic/Hazardous Substances and Environmental Engineering. Vol. 40. Iss. 6–7 p. 1123–1132. DOI 10.1081/ESE-200055599.
  • MAHMOUD N., ZEEMAN G., GIJZEN H., LETTINGA G. 2004. Anaerobic stabilisation and conversion of biopolymers in primary sludge – Effect of temperature and sludge retention time. Water Research. Vol. 38. Iss. 4 p. 983–991. DOI 10.1016/j.wa-tres.2003.10.016.
  • MALKIN A.Y., MASALOVA I., PAVLOVSKI D., SLATTER P. 2004. Is the choice of flow curve fitting equation crucial for the estimation of pumping characteristics? Applied Rheology. Vol. 14 p. 89–95. DOI 10.1515/arh-2004-0005.
  • MATOUŠEK V. 2009. Predictive model for frictional pressure drop in settling-slurry pipe with stationary deposit. Powder Technology. Vol. 192. Iss. 3 p. 367–374. DOI 10.1016/j.pow-tec.2009.01.017.
  • MIRMASOUMI S., BEHZADMEHR A. 2012. Effects of nanoparticles mean diameter on the particle migration and thermohydraulic behavior of laminar mixed convection of a nanofluid in an inclined tube. Heat and Mass Transfer. Und Stoffuebertragung. Vol. 48 p. 1297–1308. DOI 10.1007/s00231-012-0978-x.
  • OSRA F.A. 2020. A laboratory study of solid-water mixture flow head losses through pipelines at different slopes and solid concentrations. South African Journal of Chemical Engineering. Vol. 33 p. 29–34. DOI 10.1016/j.sajce.2020. 04.001.
  • RATKOVICH N., HORN W., HELMUS F.P., ROSENBERGER S., NAESSENS W., NOPENS I., BENTZEN T.R. 2013. Activated sludge rhe-ology: A critical review on data collection and modelling. Water Research. Vol. 47. Iss. 2 p. 463–482. DOI 10.1016/j.wa-tres.2012.11.021.
  • REMAÎTRE A., MALET J.P., MAQUAIRE O., ANCEY C., LOCAT J. 2005. Flow behaviour and runout modelling of a complex debris flow in a clay-shale basin. Earth Surface Processes and Landforms. Vol. 30. Iss. 4 p. 479–488. DOI 10.1002/esp.1162.
  • SLATTER P. 2003. Pipeline transport of thickened sludges. Water. Vol. 21. p. 56–57.
  • SLATTER P. 2008. Pipe flow of highly concentrated sludge. Journal of Environmental Science and Health, Part A. Toxic/Hazardous Substances and Environmental Engineering. Vol. 43. Iss. 13 p. 1516–1520. DOI 10.1080/ 10934520802293636.
  • SLATTER P.T. 1997. The rheological characterisation of sludges. Water Science and Technology. Vol. 36. Iss. 11 p. 9–18. DOI 10.1016/S0273-1223(97)00663-X.
  • WANG H., ZHAO C., CHEN S. 2019. Method for determining the critical velocity of paste-like slurry filling into goaf using computational fluid dynamics. Arabian Journal of Geosciences. Vol. 12, 528. DOI 10.1007/s12517-019-4664-x.
  • ZHANG X., LI Z., ZHANG Z., LI Y. 2018. Discrete element analysis of the rheological characteristics of self-compacting concrete with irregularly shaped aggregate. Arabian Journal of Geosciences. Vol. 11, 597. DOI 10.1007/s12517-018-3960-1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecf12ef3-2bbe-4dca-b3d7-37973018c46d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.