PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Catalytic oxidation of lignin to aromatics over salen-porphyrin complex as a biomimetic catalyst

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is to enable increased production of aromatics by the use of salen-porphyrin complex (ZnPSC6) as a binuclear catalyst for the catalytic oxidation of Indulin AT lignin. Catalytic activity was enhanced by the increase in active sites, as confirmed by the results observed in the conversion of lignin model compounds and Indulin AT lignin compared with processes using the mononuclear complexes Zn(salen) and Zn(Phe-TPP). The yields of long and convoluted aromatics from the catalytic oxidation of Indulin AT lignin with ZnPSC6 reached high values after reaction at 80°C for 24 h. Notably, the formation of vanillin was promoted by the increase in active sites over ZnPSC6. This was followed by a significant decrease of β-O-4 linkages and refractory condensed substructures in the lignin, induced by ZnPSC6. This may be expected to be an important area for further study.
Rocznik
Strony
67--80
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Hainan Tropical Ocean University, Sanya, China
autor
  • Fuzhou University, Fuzhou, China
  • Nankai University, Tianjin, China
  • Wuyi University, Wuyishan, China
  • Kunming University of Science and Technology, Kunming, China
  • Tsinghua University, Beijing, China
  • Qilu University of Technology, Jinan, China
  • Kunming University of Science and Technology, Kunming, China
autor
  • Hainan Tropical Ocean University, Sanya, China
  • Chongqing University Chongqing, China
  • Sichuan University of Science and Engineering, Zigong, China
autor
  • Sichuan University of Science and Engineering, Zigong, China
autor
  • Guangxi University For Nationalities, Nanning, China
autor
  • Guangxi University For Nationalities, Nanning, China
autor
  • Guangxi University For Nationalities, Nanning, China
Bibliografia
  • Badamali S.K., Luque R., Clark J.H., Breeden S.W. [2011]: Co(salen)/SBA-15 catalysed oxidation of a β-O-4 phenolic dimer under microwave irradiation. Catalysis Communications 12 [11]: 993-995
  • Crestini C., Saladino R., Tagliatesta P., Boschi T. [1999]: Biomimetic degradation of lignin and lignin model compounds by synthetic anionic and cationic water soluble manganese and iron porphyrins. Bioorganic & Medicinal Chemistry 7 [9]: 1897-1905
  • Dawange M., Galkin M.V., Samec J.S.M. [2015]: Selective aerobic benzylic alcohol oxidation of lignin model compounds: route to aryl ketones. ChemCatChem 7 [3]: 401-404
  • de Gonzalo G., Colpa D.I., Habibm M.H.M., Fraaije M.W. [2016]: Bacterial enzymes involved in lignin degradation. Journal of Biotechnology 236: 110-119
  • Diaz-Urrutia C., Hurisso B.B., Gauthier P.M.P., Sedai B., Singer R.D., Baker R.T. [2016]: Catalytic aerobic oxidation of lignin-derived bio-oils using oxovanadium and copper complex catalysts and ionic liquids. Journal of Molecular Catalysis A: Chemical 423: 414-422
  • Fackler K., Gradinger C., Hinterstoisser B., Messner K., Schwanninger M. [2006]: Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme and Microbial Technology 39 [7]: 1476-1483
  • Fujii H., Kurahashi T., Ogura T. [2003]: A sterically hindered salen iron complex as a model for active sites of mononuclear non-heme iron enzymes. Journal of Inorganic Biochemistry 96 [1]: 133-133
  • Hocker B., Claren J., Sterner R., Petsko G.A. [2004]: Mimicking enzyme evolution by generating new (β α)8-barrels from (β α)4-half-barrels. Proceedings of the National Academy of Sciences of the United States of America 101 [47]: 16448-16453
  • Huang S., Sun L., Ye C. [1983]: Studies on the porphyrin compounds. Journal of the Chinese Chemical Society (Chinese Edition) 4 [l]: 381-384
  • Kim H.-Y., Jang S.-K., Hong C.-Y., Choi J.W., Choi I.-G. [2016]: Relationship between characteristics of ethanol organosolv lignin and the productivity of phenolic monomers by solvolysis. Fuel 186: 770-778
  • Li W., Zhang M., Du Z., Ma Q., Jameel H., Chang H.-M. [2015]: Photocatalytic degradation of lignin model compounds and kraft pine lignin by CdS/TiO2 under visible light irradiation. Bioresources 10 [1]: 1245-1259
  • Ma Q.Y., Liu K.J., Mao J.Y., Chen K.X., Liang C., Yao J., Chen Z.R., Li H.R. [2017]: Kinetic studies on the liquid-phase catalytic oxidation of 4-methyl guaiacol to vanillin. The Canadian Journal of Chemical Engineering 95 [8]: 1544-1553
  • Maruyaama K., Kobayashi F., Osuka A. [1990]: Salen-capped porphyrins as an active site model of metalloenzymes: Synthesis and their intramolecular interactions between the metal complexes. Bulletin of the Chemical Society of Japan 63 [9]: 2672-2681
  • Maruyama K., Kobayashi F., Osuka A. [1991]: Synthesis and characterization of directly linked salen–porphyrin system with constrained geometries. Bulletin of the Chemical Society of Japan 64 [1]: 29-34
  • Michael Z., Arthur R. [2001]: N-hydroxy compounds as new internal standards for the 31P-NMR determination of lignin hydroxyl functional groups. Holzforschung 55 [3]: 283-285
  • Mishra V., Jana A.K., Jana M.M., Gupta A. [2017]: Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse. Bioresource Technology 236: 49-59
  • Martin C.S.M., Teixeira F.S. [2013]: Electrochemical properties of oxo–manganese complex biomimicking enzyme active sites and its electrocatalytic application for dopamine determination. Electrocatalysis 4 [2]: 92-100
  • Neumann G.T., Pimentel B.R., Rensel D.J., Hicks J.C. [2014]: Correlating lignin structure to aromatic products in the catalytic fast pyrolysis of lignin model compounds containing β-O-4 linkages. Catalysis Science & Technology 4 [11]: 3953-3963
  • Nousiainen P., Kontro J., Manner H., Hatakka A., Sipila J. [2014]: Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Fungal Genetics and Biology 72: 137-149
  • Pu Y., Cao S., Ragauskas A.J. [2011]: Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy & Environmental Science 4 [9]: 3154-3166
  • Song Q., Wang F., Xu J. [2012]: Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chemical Communications 48 [56]: 7019-7021
  • Strassberger Z., Tanase S., Rothenberg G. [2011]: Reductive dealkylation of anisole and phenetole: towards practical lignin conversion. European Journal of Inorganic Chemistry 2011 [27]: 5246-5249
  • Su J.-L., Zhao W.-J., Zhang F.-C., Gao L.-Z., Gao L. [2007]: Study of complexes of salen-porphyrin. Applied Chemical Industry 36 [4]: 390-393
  • Teguia C.D., D’Amours S., Albers R., Stuart P. [2017]: Decision-making process for the identification of preferred lignin-based biorefinery strategies. TAPPI Journal 16 [4]: 229--240
  • Thring R.W., Chornet S., Bouchard J., Vidal P.F., Overend R.P. [2002]: Characterization of lignin residues derived from the alkaline hydrolysis of glycol lignin. Canadian Journal of Chemistry 68 [1]: 82-89
  • Wezenberg S.J., Metselaar G.A., Escudero-Adan E.C., Benet-Buchholz J., Kleij A.W. [2009]: Access to hybrid supramolecular salen-porphyrin assemblies via a selective in situ transmetalation-metalation self-assembly sequence. Inorganica Chimica Acta 362 [4]: 1053-1057
  • Xia W., Salmeia K.A., Vagin S.I., Rieger B. [2015]: Concerning the deactivation of cobalt(III)-based porphyrin and salen catalysts in epoxide/CO2 copolymerization. Chemistry: A European Journal 21 [11]: 4384-4390
  • Zhao X.-J., Ruan W.-J., Zhu Z.-A. [2006]: Study on synthesis and spectral properties of porphyrin-salen compounds. Chinese Journal of Organic Chemistry 26 [8]: 1087-1092
  • Zhou X.-F. [2015]: Catalytic oxidation and conversion of kraft lignin into phenolic products using zeolite-encapsulated Cu(II) [H4]salen and [H2]salen complexes. Environmental Progress & Sustainable Energy 34 [4]: 1120-1128
  • Zhou X.-F., Tang K. [2016]: Combining laccase with Cu(salen) catalysts for oxidation of kraft lignin. Drewno 59 [198]: 35-47
  • Zhu C., Ding W., Shen T., Tang C., Sun C., Xu S., Chen Y., Wu J., Ying H. [2015]: Metallo-deuteroporphyrin as a biomimetic catalyst for the catalytic oxidation of lignin to aromatics. ChemSusChem 8 [10]: 1768-1778
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecf09795-8256-46d2-8a01-5a93af29b993
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.