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Abstract 

Electrocatalytic gas sensors belong to the family of electrochemical solid state sensors. Their responses are 

acquired in the form of I-V plots as a result of application of cyclic voltammetry technique. In order to obtain 

information about the type of measured gas the multivariate data analysis and pattern classification techniques 

can be employed. However, there is a lack of information in literature about application of such techniques in 

case of standalone chemical sensors which are able to recognize more than one volatile compound. In this article 

we present the results of application of these techniques to the determination from a single electrocatalytic gas 

sensor of single concentrations of nitrogen dioxide, ammonia, sulfur dioxide and hydrogen sulfide. Two types of 

classifiers were evaluated, i.e. linear Partial Least Squares Discriminant Analysis (PLS-DA) and nonlinear 

Support Vector Machine (SVM). The efficiency of using PLS-DA and SVM methods are shown on both the raw 

voltammetric sensor responses and pre-processed responses using normalization and auto-scaling. 

 

Keywords: electrocatalytic sensor, cyclic voltammetry, data pre-processing, Support Vector Machine, Partial 

Least Squares Discriminant Analysis. 

 
© 2013 Polish Academy of Sciences. All rights reserved 

 

 

1. Introduction 

  

 Gas-analyzing systems based on gas sensors or gas sensor arrays are the practical 

implementation of an artificial olfaction concept proposed by Persaud in 1982 [1]. Since then, 

a variety of electronic noses were proposed for qualitative and quantitative characterization of 

different volatile compounds. Such systems usually consist of an array of chemical sensors 

combined with specific data analysis and pattern-recognition methods [2]. The electronic nose 

systems are still of scientific and commercial interest due to their ability of fast, reliable and 

even on-line measurements in a working environment. One of the areas of application of such 

devices is the field of air quality monitoring.  

Electrocatalytic gas sensors belong to the group of solid-state electrochemical gas sensors 

[3, 4]. Such sensors are operating in the cyclic voltammetry mode. With proper excitation and 

in suitable operating conditions they are able to detect different gases with a single and simple 

sensor structure [5, 6]. The electrocatalytic sensors are still under development. Our previous 

research activities were connected with investigation of different sensor structures and 

operating conditions and with elucidating their sensing mechanism [7-11]. On the other hand,  

efficient ways of electrocatalytic gas sensor response analysis in order to predict the gas type 

and estimate its concentration are sought. So far, only a few methods have been proposed. 

One method utilizes the fact that concentration of the measured compound is related to the 

area under the I-V peak. This assumption is based on the fact that there is a relation between 
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the amount of the charge taking part in  electrochemical electrode reactions and the area under 

the peak [8]. Another approach has been proposed by analogy to the wet chemistry, where the 

height of the peak at a specific excitation voltage can be used as an indicator of the type and 

concentration of the measured gas [12]. Our recent studies are related to response analysis 

from a single electrocatalytic gas sensor using multivariate data analysis and pattern 

recognition techniques. These techniques are commonly used in the field of gas-sensing               

[2, 13]. Although, there were also reported attempts of using noise measurements and simpler 

algorithms for gas detection with single commercial TGS gas sensors [14].  

This study is focused on the examination of the classification efficiency of linear and 

nonlinear classifiers, namely Partial Least Squares Discriminant Analysis (PLS-DA) and 

Support Vector Machine (SVM), which are performed on data from the single electrocatalytic 

gas sensor. Both methods are applied for the first time for the analysis of the electrocatalytic 

gas sensor responses. Four different environmental gases of single concentration (20 ppm), 

i.e. nitrogen dioxide, ammonia, sulfur dioxide and hydrogen sulfide, were investigated. The 

ability of determination of the type of measured gas was examined using raw data and 

processed with two popular pre-processing methods – data normalization and auto-scaling. 

Additionally, the results of using PCA as the feature extraction method and SVM as classifier 

for improving the determination efficiency are shown. 

 
2. Experimental 

 

The electrochemical gas sensor was fabricated using solid state Nasicon electrolyte 

(chemical formula Na2.8Zr2Si1.8P1.2O12). A description of the sensor’s preparation procedure is 

described in detail in [7]. Briefly, the Nasicon powder was prepared by the conventional 

solid-state ball milling method using stoichiometric mixtures of chemically pure NaHCO3, 

ZrO2, SiO2 and NH4PO4•3H2O [15]. Pellets in the form of discs of 12 mm in diameter and              

1 mm thick were prepared by powder iso-axial pressing and sintering at 1200°C. Electrodes 

were made by coating opposite pellet sides with a platinum paste (ESL 5542) and firing at 

900°C. The measurements were conducted in synthetic air and in 20 ppm of ammonia, sulfur 

dioxide, nitrogen dioxide and hydrogen sulfide. All toxic gases were obtained premixed with 

synthetic air (Linde Gas).  Precision mass flow controllers were used for obtaining the desired 

concentration of each gas. During measurements a constant gas flow of 100 cm
3
 min

-1
 was 

maintained. The sensor was placed in a tube furnace. For electrical measurements the 

Solartron SI 1287 electrochemical interface was used. The sensor was excited with a 

symmetrical triangular voltage of 5 V amplitude and sweep rate of 50 mV s
-1

. All results 

presented in this work were obtained for a single sensor at an operating temperature of 300ºC. 

The measurements were conducted according to the following procedure.  

Before the measurements, the sensor was regenerated by cycling (40 cycles, ±5 V, 

50 mV s
-1

) in synthetic air (SA) at the temperature of 500ºC [16]. When the process of 

regeneration was completed, the operating temperature was decreased to 300ºC and the 

measurements in synthetic air were conducted until the sensor response was stable                    

(~20 cycles). After that, the sensor was exposed to 20 ppm of the selected gas (in the 

following order – H2S, NH3, NO2, SO2), and when the response has been stabilized                   

(after ~10 cycles), the measurements were performed and I-V responses were collected for 

further analysis. After the measurements, the procedure of regeneration was repeated and the 

following gas was measured as described above. 
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3. Data analysis 

 

In order to utilize the possibility of determining the gas type using pattern recognition 

algorithms, the measured data have been treated in a systematic way. The analysis consisted 

of  procedures of feature selection from the measurements, data pre-processing, feature 

extraction, dimensionality reduction and finally classification.  

The analysis of electrocatalytic sensor responses is based on the assumption that the whole 

I-V curve could give useful information. Thus, the values of current from the whole range of 

voltage excitation are treated as features for the classifiers. They are frequently pre-processed 

using such methods as normalization or auto-scaling [17]. The pre-processing often improves 

the classification results [18]. Though, the pre-processing step is not always used [19]. In this 

work, we investigate the influence of utilizing pre-processing techniques on the efficiency of 

linear and nonlinear classifiers. We also present the results for raw (untreated) data. In fact, 

the good performance using untreated data would also be desirable because of data processing 

simplification. The next step in multidimensional analysis is feature extraction. The goal for 

this step is to remove the redundancy from data and present them in a more suitable form for 

the classifier. In the field of gas sensor analysis and voltammetric data analysis in liquid 

electrochemistry, the Principal Component Analysis is often used at this step [20 - 22]. In this 

work we demonstrate the influence of application of the PCA feature extraction procedure on 

the efficiency of classification. The classifiers used in this work, PLS-DA and SVM, are the 

supervised analysis methods based on learning by example. This means that they need to be 

trained using a training dataset to perform the task of classification. The efficiency of the 

classifier is tested through the use of the test set, which contain a different dataset than used 

during training. All analysis presented in this study has been performed using Toolboxes 

(Statistics Toolbox) provided in Matlab (Mathwork, Inc). For SVM classification, the library 

LIBSVM was used [23]. 

 
3.1. Dataset – feature selection procedure 

 

The measured and collected I-V responses were used to create a dataset for the analysis. 

The resulting multidimensional set contained a total of 158 observations (acquisitions) for 

four toxic gases and synthetic air. Each I-V curve (a single acquisition) taken for analysis was 

treated as a vector of selected values of current corresponding to the values of voltage 

excitation in the range from -5 V to 5 V with a 0.1 V step. As a result, a single acquisition 

vector length was equal to 200 current responses. The dataset which contained all acquisitions 

was divided into 2 sets, which were used for different purposes. The initial 73% of the 

acquisitions for each of measured gas was used for training the classifiers (training dataset), 

while the last 27% of the acquisitions for testing efficiency of classifiers (testing dataset). 

Additionally, the whole dataset was used for PCA analysis in order to visualize classes 

representing each volatile compound: synthetic air, ammonia, nitrogen dioxide, sulfur dioxide 

and hydrogen sulfide.  

 
3.2. Principal Component Analysis – feature extraction procedure 

 

Principal Component Analysis is a linear technique that can be used for feature extraction 

and input data reduction. The goal is to obtain new features that provide information in a 

more compact way in comparison with the original data. It is a mathematical procedure that 

uses an orthogonal transformation to convert a set of observations of possibly correlated 
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variables into a set of values of linearly uncorrelated variables called principal components 

(PCs). The number of PCs is equal to the number of original variables, but often the first few 

components explain the most variance of the original variables. This fact frequently implies a 

reduction in the number of features used for the classification procedure because the 

dimension of the feature space is now reduced. The PCA can also be utilized to visualize the 

multidimensionality of data. Namely, it helps establishing whether the classes can be 

distinguished. The PCA method converts the input data X into the product of two               

matrices – scores Q and loading P, according to the rule:   
 

 TQPX = . (1) 

 

The score matrix contains vectors which describe the direction of the principal components 

in relation to the observations, while the loading matrix is a set of loading vectors which 

describe the direction of the principal components in relation to the original variables               

[2, 24, 25]. In this paper the PCA is used for two purposes: for feature extraction and to 

visualize the multidimensionality of data. For the former, the PCA is performed on the train 

set, so the initial acquisition vector can be reduced for the further classification task. For the 

latter, the PCA is performed on the whole dataset to visualize the effect of application of the 

pre-processing procedure and repeatability of the sensor responses. 

 
3.3. Data pre-processing 

 

In the analysis of sensor output signals, the choice of the appropriate pre-processing 

technique is crucial for the performance of the pattern classifier [26]. However, there is still 

no rigid guideline which pre-processing technique is the best to maximize the classification 

efficiency [17]. Here, two pre-processing methods are applied, i.e. normalization                  

(range-scaling) and auto-scaling. Normalization is used to rescale the values of the 

measurements to a level which is more suitable for classifiers. Especially in the case of the 

Support Vector Machine classifier its performance might be decreased dramatically, if the 

input data are not rescaled to the appropriate level, such as [0, 1] or [-1, 1] [27]. The formula 

of the normalization technique for values from the matrix with acquisitions X is presented 

below: 
 

 
)min()max(

)min(

jj

jijnorm

ij
xx

xx
x

-

-
= , (2) 

 

where X
norm

 is the normalized matrix, index i is the number of rows (one row is one 

acquisition) and j indicates the number of columns (corresponding to a set of current values 

related to the selected excitation voltage for all acquisitions). 
  

The auto-scaling method provides the mean-centering of data from X matrix and sets the 

variance within the data to 1. In this procedure, the mean value of the j
th

 column is subtracted 

from the original matrix, and then it is divided by the standard deviation of the j
th

 column. The 

formula for calculation the auto-scaled matrix X
scal

 is shown below: 
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To present the auto-scaled data in a form more suitable for classifiers, the third pre-

processing technique is based on the combination of the two previously described methods. 

Namely, the acquisitions are in the first step auto-scaled and then normalized in order to 

obtain the data in the range between 0 and 1.  

Beside the utilization of pre-processing techniques, we also demonstrate the efficiency of 

classification using only raw data, i.e. without any mathematical operations. In fact, if it is 

possible to achieve  satisfactory results on the raw (untreated) data, it would be an advantage 

for the gas detecting system based on the electrocatalytic gas sensor.  

 
3.3. PLS-DA and SVM classifiers 

 

A Partial Least Squares analysis have been originally developed as a regression method 

[28], commonly used for modeling and analysis of multidimensional data, i.e. data from 

electrochemical sensors. The PLS can be also utilized as a classifier (PLS-DA). This linear 

supervised method requires two datasets – a matrix of measured samples X (i.e. a set of 

acquisitions) and corresponding to them vector Y containing classes for specific compound. 

The PLS-DA models the relationship between those two datasets. It determines a set of latent 

variables (LVs) in a similar way to the principal components for the PCA. However, in case 

of PLS-DA, the LVs explain both the variance of X as well as the correlation with the Y. As a 

result of using the PLS-DA method, a matrix of predictors is achieved, which estimates class 

affiliation [18, 29]. In this study we present the results of creating PLS-DA models with 

various numbers of latent variables used to train the classifier. 

A second classifier examined in this study was the Support Vector Machine. The SVM 

method, proposed by Vapnik [30], has proved to be an useful tool in case of analyzing data 

from gas sensors [31, 32, 33]. The SVM maps the input data onto a higher dimensional 

feature space, which is non-linearly related to the input space. The goal for this method is to 

achieve a maximal margin between target classes. The SVM was primarily proposed as a 

binary classifier, however, by utilizing kernel functions and strategies one-against-one or one-

against-all the SVM can be applied to the multi-class problems. For the analysis presented in 

this study, a strategy one-against-one for determining five volatile compounds was used. It 

means, that the SVM classifier creates k(k-1)/2 different binary classifiers, where k is the 

number of different classes. A great advantage of the SVM method is the fact that using 

kernel functions it provides non-linear classification or regression. The most popular kernel 

functions are linear, Gaussian radial basis or polynomial functions. In this work, the Gaussian 

radial basis function was selected as a kernel function (4): 
 

 )exp(),(
2

''

iiii xxxxk --= g , (4) 

 

where, xi and xi
’
 are the row vectors from the matrix of acquisitions X. 

The procedure of applying SVM for a specific classification problem requires estimating 

optimal parameters, like the penalty-constant C or parameter γ. For a large value of C, a large 

penalty is assigned to margin errors. A smaller value of C allows ignoring points which are 

too close to the decision boundary, and allows increasing the margin between classes. The 

parameter γ is used to estimate the properties of Gaussian kernel function. The larger the 

parameter γ, the greater  the curvature of the decision boundary. The optimal parameters C 

and γ can be obtained using a cross-validation technique. In the presented study, to train the 

SVM classifier, a 10-fold cross-validation was performed [23, 27]. 
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3.4. Procedure of the classification 

 

A flow diagram of the performed analysis is presented in Fig. 1. The raw data from the 

training set, and the data transformed using pre-processing techniques were treated as inputs 

for the PLS-DA and SVM classifiers. Additionally, the SVM classifier was employed with  

dimensionally reduced data using the PCA feature extraction method. The results of 

classification are presented in the form of percentage efficiency CC of successful 

classification, represented by formula: 

 %100´=
ALL

CC

N

N
CC , (5) 

where the NCC represents correctly classified data, while the NALL is the total number of testing 

data. 

 

 

4. Results and discussion 

 

Fig. 2 presents raw sensor responses at 300°C for 20 ppm of sulfur dioxide, 20 ppm of 

hydrogen sulfide and 20 ppm of nitrogen dioxide. It can be seen that responses for SO2 and 

H2S look similar, what is manifested by the similar excitation voltage for the position of the 

peak. Moreover, the responses for sulfur-containing compounds (SCC) are also not very 

repetitive (see Fig. 3a) in comparison with the responses for non-sulfur containing 

compounds. For example, the nitrogen dioxide acquisitions (see Fig.3b) are very repetitive.  

 

 

 
 

Fig. 1.  Analysis flow diagram.  
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Fig. 2.  Typical I-V plots obtained for 20 ppm  SO2, 20 ppm  NO2 and 20 ppm  H2S                                              

for the sensor operated at 300°C.  

 

 

In order to perform analysis and classification using PCA, PLS-DA and SVM methods, the 

measured sensor responses were organized in the form of vectors containing 200 values of 

measured currents. The acquisition vectors were arranged into a training dataset matrix and 

then pre-processed. In Fig. 4a a sample acquisition for 20 ppm of ammonia is shown to 

visualize one acquisition vector. The effects of using auto-scaling and normalization can be 

observed in Fig. 4a right axis and Fig. 4b. It can be observed that the normalization procedure 

is rescaling the dataset values into a range from 0 to 1, while the shape of the original plot is 

retained. The response transformed using auto-scaling reveals more potentially useful features 

for classification, i.e. additional peaks, which can help to improve the classification 

efficiency.  
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Fig. 3.  Reproducibility of sensor responses for sulfur containing compounds - 4 acquisitions for H2S and 4 

acquisitions for SO2 (a) and nitrogen dioxide - 8 acquisitions (b).  

a. b. 
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Fig. 4.  Single acquisition for 20 ppm of ammonia in the form of a vector suitable for classifier: raw data and 

normalized (a) and auto-scaled and normalized (b).  

 

In order to visualize the effects of using  pre-processing methods, the PCA was performed 

on the whole dataset. The PCA score plots for normalized and auto-scaled data are presented 

in Fig. 5a and 5b, respectively. In both cases, data represented in the PC space show distinct 

clusters for each compound. The clusters for the SA, NO2 and NH3 are very compact, so one 

may expect that the sensor responses for those compounds were reproducible and the 

efficiency of the classifiers should be very high. The PCA scores plot for normalized data 

shows also that sensor responses for SCC were not very reproducible. The boundary between 

SO2 and H2S is not sharp.  

However, the PCA performed on the auto-scaled data shows (see Fig. 5b) that the pre-

processing method improves the ability of class separation for the SCC compounds. Namely, 

the auto-scaling procedure forms two clearly separable clusters in the PC space for H2S and 

SO2.  
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Fig. 5.  PCA score plots for normalized data (a) and for auto-scaled data (b).  

a. b. 
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Fig. 6.  The classification efficiency for various number of LVs (a) and PCs as inputs for SVM (b). 

 

 

The linear PLS-DA classifier had to be trained using a train dataset to provide satisfactory 

results. The complexity of the model was examined by testing its performance with a varying 

number of latent variables. The number of LVs was altered from 1 to 10 for each: raw, 

normalized, auto-scaled and auto-scaled and normalized data. The assumed criterion of 

optimal parameters was the minimal number of LVs which provides  100% of classification 

efficiency. The results shown in Fig. 6a and Table 1 indicate that using the PLS-DA it was 

possible to classify correctly all test samples, however, with a different number of LVs for 

raw and pre-processed data. For the raw data, 10 LVs had to be used to create a model which 

was able to achieve a 100% correct classification. For normalized data, the same result was 

obtained with 8 LVs. The best performance provided the model on the auto-scaled data 

without normalization. In this case only 4 LVs are sufficient to obtain a 100% correct 

classification. This performance was expected, since the PCA plot presented in Fig. 5b shows 

distinct clusters for all investigated gases. In case of normalization of the auto-scaled data the 

number of LVs necessary to obtain 100% of correct classification was not improved. Only 5 

LVs were necessary to obtain 100% classification efficiency.  

The SVM, the same as the PLS-DA, requires a stage of training and estimating optimal 

parameters. To do this a 10-fold cross validation was performed on the training data. In the 

SVM with kernel Gaussian radial basis function, various values of C and g parameters during 

the cross validation procedure were examined. In this procedure both parameters were altered 

to find an optimal pair of C and g as described in [23]. Namely, each pair of the C and g from 

the range (2
-6

, 2
6
) with a 2

0.1
 step were examined to find the one giving the highest cross 

validation accuracy. The optimal values of C and γ parameters for raw, normalized and auto-

scaled data are presented in Table 1. It can be seen that the penalty-constant C validated in the 

examined range for all preprocessing techniques is obtained the same. Namely, a relatively 

small value of 29.9 was achieved, what suggest that the boundary margin is relatively wide 

and independent on the preprocessing method. The value of the kernel parameter γ varies 

depending on the type of the dataset and achieves the smallest values in case of preprocessed 

data. Since each acquisition contained 200 features, computationally the classification 

procedures are rather complex, especially in case of the SVM. Therefore, the PCA method 

was investigated for feature extraction and data dimension reduction to use it with the SVM 

classifier. In this case a few initial PC scores obtained on the training dataset were used as the 

input for the SVM. The procedure of estimating optimal parameters for the classifier was 

a. b. 
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identical as in case of the SVM analysis with original acquisition dataset as inputs. The 

classification efficiency as a function of the number of the PC scores used as an input for the 

SVM was examined The optimal SVM parameters are also summarized in Table 1. The 

performance of classification with different number of PC inputs for raw and pre-processed 

data is also shown in  Fig 6b.  

 
Table 1. Optimal parameters for the classifiers. 

 

Classifier parameters Raw data Normalized Auto-scaled 

Auto-scaled 

and 

normalized 

SVM 
C 29.9 29.9 29.9 29.9 

γ 29.9 0.47 0.058 0.47 

PCA+SVM 

C 29.9 29.9 29.9 29.9 

γ 29.9 7.5 0.029 3.7 

Number of PCs 2 2 3 4 

PLS-DA Number of LVs 10 8 4 5 

 
For each investigated method the best classification efficiencies are recapitulated in 

Table 2. The results of classification using the SVM with all 200 features as inputs proved 

that pre-processing significantly improves the classification performance. The SVM 

performed on the raw data provided the worst result (CC=72.1%). Better results were 

achieved for normalized data, which proved the literature recommendations for SVM [27]. It 

says that the SVM efficiency might dramatically decrease when data is not in the range of 

small values. The best results, i.e. all samples classified correctly, were achieved for the auto-

scaled and normalized data. One may note that for small values of γ (Table 1) it was possible 

to achieve better classification results.  

 
Table 2. Classification efficiencies for all investigated methods. 

 

Method Raw data Normalized Auto-scaled 
Auto-scaled and 

normalized 

SVM 72.1% 95.4% 97.7% 100% 

PCA+SVM 72.1% 100% 100% 95.3% 

PLS-DA 100% 100% 100% 100% 

 
Also the combination of the PCA and SVM methods provided interesting results. The 

optimal parameters of the SVM and SVM combined with PCA feature extractor can be 

compared in Table 2. In case of the SVM with PCA feature extractor performed on raw data it 

was impossible to achieve better classification efficiency than using the standalone SVM. The 

normalization pre-processing before the PCA enabled to obtain 100% of correct 

classifications. The same performance was achieved on an auto-scaled dataset. However, for 

unknown reason, it was impossible to achieve as good classification efficiency on a 

normalized and auto-scaled dataset.  

 
5. Conclusions 

 

A simple, low-cost device for air-contaminant monitoring with single and simple sensor 

structure requires a reliable data analysis system. In this paper pattern classification 

techniques for such a system were investigated. In this study the classification efficiency of 

two widely used methods in electronic noses and tongues are investigated. Both investigated 
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methods, the PLS-DA and SVM, allowed achieving satisfactory results with a 100% of 

successful classification. However, for the linear PLS-DA a 100% efficiency was achieved for 

both raw and pre-processed data. The SVM, on the other hand, proved to be very sensitive to 

the pre-processing procedure and its efficiency was low in the case of a raw dataset. The 

preliminary results presented in this article show that the multivariate analysis and pattern 

recognition procedures used for determining various air-contaminants with a single 

electrocatalytic gas sensor provides satisfactory results. Further studies are connected with the 

examination of methods for prediction of concentrations of different gases and their mixtures, 

what should lead to the development of a reliable and simple gas-analyzing system.  
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