Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the agronomic performance of high-protein soybean varieties under various double-row intercropping patterns in drought-affected dryland areas of Lombok, Indonesia. The research utilised an experimental approach using a split plot design. The main plot comprised four levels of double-row intercropping patterns (B): (B1) soybean sole cropping with a spacing of 40:20:15 cm, (B2) soybean-maize intercropping with a spacing of 70:20:15 cm, (B3) soybean-maize intercropping with a spacing of 60:20:15 cm, and (B4) soybean-maize intercropping with a spacing of 50:20:15 cm. The subplot included five high-protein soybean varieties (V): ‘Kemuning-1’ (V1), ‘Mutiara-2’ (V2), ‘Mutiara-3’ (V3), ‘Sugentan-2’ (V4), and ‘Gamasugen-2’ (V5). Each combination was replicated three times. The assessed agronomic traits included plant height, trifoliate leave number, node number, branch number, trifoliate leaf area, days to flowering, pod number, filled pod number, percent of unfilled pod, grain number, 100-grain mass, grain mass per plant, and grain yield per hectare. The results showed that the B×V interaction significantly influenced agronomic traits, including the number of nodes and branches, as well as yield and its components. The varieties ‘Kemuning-1’, ‘Mutiara-3’, and ‘Gamasugen-2’ produced better grain yields in sole cropping and double-row intercropping systems, but exhibited greater crop reductions under doublerow intercropping, indicating lower adaptability to the system. In contrast, the consistent grain yield stability of ‘Mutiara-2’ and ‘Sugentan-2’ showed greater efficiency under double-row intercropping systems, indicating their superior adaptability to double-row intercropping conditions.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
151--163
Opis fizyczny
Bibliogr. 74 poz., mapa, rys., tab., wykr.
Twórcy
autor
- University of Mataram, Postgraduate Program, Master Program Study of Dryland Agriculture, Jl. Pendidikan 37, Mataram, Indonesia
autor
- University of Mataram, Postgraduate Program, Master Program Study of Dryland Agriculture, Jl. Pendidikan 37, Mataram, Indonesia
autor
- University of Mataram, Faculty of Agriculture, Department of Agronomy, Program Study of Agroecotechnology, Jl. Majapahit 62, Mataram, Indonesia
autor
- Agriculture Office of Central Lombok Regency, Jl. Ahmad Yani No. 1, 83511 Praya, West Nusa Tenggara, Indonesia
autor
- Universitas Islam Negeri Mataram, Faculty of Education and Teacher Training, Department of Biology Education, Jl. Gadjah Mada Jempong No. 100, Mataram, Indonesia
Bibliografia
- Abeba, H.S. (2021) Response of deficit irrigation and furrow irrigation methods on yield and water use efficiency of soybean (Glycine max L.) in Jawi Woreda, Amhara Region [Thesis]. Available at: http://ir.bdu.edu.et//handle/123456789/13080 (Accessed: August 14, 2024).
- Ahluwalia, O., Singh, P.C. and Bhatia, R. (2021) “A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria,” Resources, Environment and Sustainability, 5, 100032. Available at: https://doi.org/10.1016/j.resenv.2021.100032.
- Ahmed, S. et al. (2020) “Optimized planting time and co-growth duration reduce the yield difference between intercropped and sole soybean by enhancing soybean resilience toward size-asymmetric competition,” Food and Energy Security, 9(3), e226. Available at: https://doi.org/10.1002/fes3.226.
- AIshwany, S.H.A. and Ali, O.N. (2024) “Effect of intercropping systems with three varieties of soybean (Glycine max) on growth traits and seed yield in soybean,” International Journal of Horticulture and Food Science, 6(1), pp. 108–113. Available at: https://doi.org/10.33545/26631067.2024.v6.i1b.195.
- Amrullah, L., Gaffar, A. and Marsahip, M. (2023) “Etnobotani keragaman tumbuhan pangan dan pemanfatannya di Desa Labulia Kecamatan Jonggat Lombok Tengah [Ethnobotany of food crop diversity and its uses in Labulia Village, Jonggat District, Central Lombok],” Jurnal Kridatama Sains dan Teknologi, 5(02), pp. 518–527. Available at: https://doi.org/10.53863/kst.v5i02.1003.
- Asghar, M.A. et al. (2020) “Shade pretreatment enhanced drought resistance of soybean,” Environmental and Experimental Botany, 171, 103952. Available at: https://doi.org/10.1016/j.envexpbot.2019.103952.
- Ayu, C. et al. (2022) “The contribution of the carrying capacity of dry land agriculture to the socio-economic level of farming communities in west Lombok Regency,” IOP Conference Series: Earth and Environmental Science, 1107(1), 012108. Available at: https://doi.org/10.1088/1755-1315/1107/1/012108.
- Blessing, D.J. et al. (2022) “Overview of the advantages and limitations of maize-soybean intercropping in sustainable agriculture and future prospects: A review,” Chilean Journal of Agricultural Research, 82(1), pp. 177–188. Available at: https://doi.org/10.4067/S0718-58392022000100177.
- BMKG (2025) Buletin IKLIM Provinsi Nusa Tenggara Barat edisi Februari 2025. Kediri: Badan Meteorologi, Klimatologi, dan Geofisika – Stasiun Klimatologi Nusa Tenggara Barat. Available at: https://www.dropbox.com/scl/fi/820rtes8evmwjrx18gqd6/02_Februari.pdf?rlkey=70n28y3ac2xtjtbwvczabh4za&e=2&dl=0 (Accessed: February 16, 2025).
- Chadfield, V.G.A., Hartley, S.E. and Redeker, K.R. (2022) “Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases,” New Phytologist, 235(6), pp. 2393–2405. Available at: https://doi.org/10.1111/nph.18302.
- Cheng, B. et al. (2022) “Shade-tolerant soybean reduces yield loss by regulating its canopy structure and stem characteristics in the maize–soybean strip intercropping system,” Frontiers in Plant Science, 13, 848893. Available at: https://doi.org/10.3389/fpls.2022.848893.
- Darré, E. et al. (2019) “Environmental impacts on water resources from summer crops in rainfed and irrigated systems,” Journal of Environmental Management, 232, pp. 514–522. Available at: https://doi.org/10.1016/j.jenvman.2018.11.090.
- Deng, H. et al. (2024) “Rational maize–soybean strip intercropping planting system improves interspecific relationships and increases crop yield and income in the China Hexi Oasis Irrigation Area,” Agronomy, 14(6), 1220. Available at: https://doi.org/10.3390/agronomy14061220.
- Du, J. et al. (2018) “Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability,” Journal of Integrative Agriculture, 17(4), pp. 747–754. Available at: https://doi.org/10.1016/S2095-3119(17)61789-1.
- Feng, C. et al. (2021) “Maize/peanut intercropping increases land productivity: A meta-analysis,” Field Crops Research, 270, 108208. Available at: https://doi.org/10.1016/j.fcr.2021.108208.
- Feng, L. et al. (2019) “Narrow-wide row planting pattern improves the light environment and seed yields of intercrop species in relay intercropping system,” PLOS ONE, 14(2), e0212885. Available at: https://doi.org/10.1371/journal.pone.0212885.
- Feng, L. et al. (2022) “Bandwidth row ratio configuration affect interspecific effects and land productivity in maize–soybean intercropping system,” Agronomy, 12(12), 3095. Available at: https://doi.org/10.3390/agronomy12123095.
- Foyer, C.H. et al. (2019) “Modelling predicts that soybean is poised to dominate crop production across Africa,” Plant, Cell & Environment, 42(1), pp. 373–385. Available at: https://doi.org/10.1111/pce.13466.
- Franco, J.G., King, S.R. and Volder, A. (2018) “Component crop physiology and water use efficiency in response to intercropping,” European Journal of Agronomy, 93, pp. 27–39. Available at: https://doi.org/10.1016/j.eja.2017.11.005.
- Glaze-Corcoran, S. et al. (2020) “Understanding intercropping to improve agricultural resiliency and environmental sustainability,” Advances in Agronomy, 162, pp. 199–256. https://doi.org/10.1016/bs.agron.2020.02.004.
- Haarhoff, S.J. and Swanepoel, P.A. (2021) “Current and future agronomic perspectives on rainfed soybean production systems in South Africa,” Agronomy Journal, 113(6), pp. 4527–4540. Available at: https://doi.org/10.1002/agj2.20816.
- Harsono, A. et al. (2020) “Soybean-maize intercropping feasibility under drought-prone area in East Java, Indonesia,” Biodiversitas Journal of Biological Diversity, 21(8), pp. 3744–3754. Available at: https://doi.org/10.13057/biodiv/d210842.
- Hemon, A.F., Listiana, B.E. and Dewi, S.M. (2023) “Pola tanaman baris ganda dan pengaruhnya terhadap pertumbuhan dan hasil beberapa genotipe kacang tanah di lahan kering [Double-row plant patterns and their effects on the growth and yield of several peanut genotypes in dry land],” Prosiding SAINTEK, 5. Available at: https://proceeding.unram.ac.id/index.php/saintek/article/view/223/221 (Accessed: August 16, 2024).
- Hemon, A.F. et al. (2018) “Performance of peanut mutant genotypes grown under drought and shade stress,” Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 4(2), pp. 202–207. Available at: https://doi.org/10.13057/psnmbi/m040218.
- Iqbal, N. et al. (2019) “Comparative analysis of maize–soybean strip intercropping systems: A review,” Plant Production Science, 22(2), pp. 131–142. Available at: https://doi.org/10.1080/1343943X.2018.1541137.
- Jaya, A. et al. (2022) “A study of agroforestry farming for tropical peatland conservation and rehabilitation in Central Kalimantan, Indonesia,” Mires and Peat, 28(22), pp. 1–34. Available at: https://doi.org/10.19189/MaP.2021.OMB.StA.2368.
- Khalid, M. et al. (2023) “Effect of row spacing under maize-soybean relay intercropping system on yield, competition, and economic returns,” Turkish Journal of Agriculture and Forestry, 47(3), pp. 390–401. Available at: https://doi.org/10.55730/1300-011X.3095.
- Kuswantoro, H. et al. (2023) “Agronomic performance, seed chemical composition, and bioactive components of selected Indonesian soybean genotypes (Glycine max [L.] Merr.),” Open Agriculture, 8(1). Available at: https://doi.org/10.1515/opag-2022-0229.
- Lewar, Y., Hasan, A. and Vertygo, S. (2023) “Study of single row and double row cultivation models on the production of innerie variety of kidney beans in low drylands,” Jurnal Penelitian Pertanian Terapan, 23(2), pp. 175–182. Available at: https://doi.org/10.25181/jppt.v23i2.2463.
- Li, L., Chen, F. and Xing, G. (2022) “Effects of fertilizer level and intercropping planting pattern with corn on the yield-related traits and insect community of soybean,” Agronomy, 12(12), 3080. Available at: https://doi.org/10.3390/agronomy12123080.
- Li, S. et al. (2021) “Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping,” Journal of Experimental Botany, 72(10), pp. 3630–3646. Available at: https://doi.org/10.1093/jxb/erab077.
- Li, X. et al. (2022) “Physiological response mechanism of oilseed rape to abiotic stress and the stress-resistant cultivation regulation,” in F. Liu et al. (eds.) Sustainable crop productivity and quality under climate change. Responses of crop plants to climate change. Amsterdam: Elsevier, pp. 207–234. Available at: https://doi.org/10.1016/B978-0-323-85449-8.00013-0.
- Liang, J., He, Z. and Shi, W. (2020) “Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China,” Agricultural Water Management, 240, 106277. Available at: https://doi.org/10.1016/j.agwat.2020.106277.
- Liu, X. et al. (2017) “Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems,” Field Crops Research, 200, pp. 38–46. Available at: https://doi.org/10.1016/j.fcr.2016.10.003.
- Luo, C. et al. (2023) “Soil moisture, nutrients, and plant growths under various irrigation and fertilization regimes during the crop replacement period in an alley intercropping system on the Loess Plateau of China,” Forests, 14(11), 2153. Available at: https://doi.org/10.3390/f14112153.
- Maitra, S. et al. (2021) “Intercropping – A low input agricultural strategy for food and environmental security,” Agronomy, 11(2), 343. Available at: https://doi.org/10.3390/agronomy11020343.
- Malcomson, J. A. (2024) Soybean production systems in Wisconsin: Recommendations for planting date, maturity group, double cropping, and intercropping. MS Thesis. Madison: University of Wisconsin. Available at: https://minds.wisconsin.edu/bitstream/handle/1793/85270/Andrew%20Malcomson%20MS%20Thesis.pdf?sequence=1&isAllowed=y (Accessed: August 16, 2024).
- Mantino, A. et al. (2020) “Effect of tree presence and soil characteristics on soybean yield and quality in an innovative alley-cropping system,” Agronomy, 10(1), 52. Available at: https://doi.org/10.3390/agronomy10010052.
- Mead, R. and Willey, R.W. (1980) “The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping,” Experimental Agriculture, 16(3), pp. 217–228. Available at: https://doi.org/10.1017/S0014479700010978.
- Mir, M.S. et al. (2022) “Role of intercropping in sustainable insect-pest management: A review,” International Journal of Environment and Climate Change, 12(11), pp. 3390–3403. Available at: https://doi.org/10.9734/ijecc/2022/v12i111390.
- Moreira, B. et al. (2024) “Intercropping systems: An opportunity for environment conservation within nut production,” Agriculture, 14(7), 1149. Available at: https://doi.org/10.3390/agriculture14071149.
- Munz, S. et al. (2025) “Yield stability and weed dry matter in response to field-scale soil variability in pea-oat intercropping,” Plant and Soil, 506(1), pp. 291–310. Available at: https://doi.org/10.1007/s11104-023-06316-9.
- Nair, P.R. et al. (2021) “Tropical alley cropping and improved fallows,” in P.K.R. Nair, B.M. Kumar and V. Nair (eds.) An introduction to agroforestry: Four decades of scientific developments. 2nd edn. Berlin: Springer, pp. 87–111. Available at: https://doi.org/10.1007/978-3-030-75358-0_6.
- Nirmala, I., Wangiyana, W. and Farida, N. (2022) “Pengaruh penyisipan berbagai varietas kedelai terhadap pertumbuhan dan hasil tanaman jagung Srikandi Kuning di Pringgabaya Lombok Timur [The effect of the insertion of various soybean varieties on the growth and yield of Srikandi Kuning corn plants in Pringgabaya, East Lombok],” Agritrop: Jurnal Ilmu-Ilmu Pertanian (Journal of Agricultural Science), 20(1), pp. 93–101. Available at: https://jurnal.unmuhjember.ac.id/index.php/AGRI-TROP/article/view/7070 (Accessed: August 16, 2024).
- Pelech, E.A. et al. (2023) “Leaf, plant, to canopy: A mechanistic study on aboveground plasticity and plant density within a maize– soybean intercrop system for the Midwest, USA,” Plant, Cell & Environment, 46(2), 405–421. Available at: https://doi.org/10.1111/pce.14487.
- Polakitan, A., Salamba, H.N. and Manoppo, C.N. (2022) “The effect of watering techniques for increasing the yield of shallots (Allium cepa L) in dry land,” E3S Web of Conferences, 361, 04021. Available at: https://doi.org/10.1051/e3sconf/202236104021.
- Porte, A. et al. (2022) “Does a soybean intercrop increase nodule number, N uptake and grain yield of the followed main crop soybean?,” Agriculture, 12(4), 467. Available at: https://doi.org/10.3390/agriculture12040467.
- Priyono, J. et al. (2019) “Identifikasi sifat, ciri, dan jenis tanah utama di Pulau Lombok [Identification of the main properties, characteristics, and types of soil on Lombok Island],” Jurnal Sains Teknologi & Lingkungan, 5(1), pp. 19–24. Available at: https://doi.org/10.29303/jstl.v5i1.102.
- Purba, D.W., Suswati, S. and Noer, Z. (2024) “Agronomic characteristics of various soybean varieties (Glycine max L.) can grow and produce due to shade stress,” Jurnal Pembelajaran dan Biologi Nukleus, 10(2), pp. 547–561. Available at: https://doi.org/10.36987/jpbn.v10i2.5720.
- Raza, M.A. et al. (2019) “Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system,” Food and Energy Security, 8(3), e170. Available at: https://doi.org/10.1002/fes3.170.
- Raza, M.A. et al. (2021a) “Compact maize canopy improves radiation use efficiency and grain yield of maize/soybean relay intercropping system,” Environmental Science and Pollution Research, 28(30), pp. 41135–41148. Available at: https://doi.org/10.1007/s11356-021-13541-1.
- Raza, M.A. et al. (2021b) “Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: A case study in Punjab Province, Pakistan,” Journal of Cleaner Production, 308, 127282. Available at: https://doi.org/10.1016/j.jclepro.2021.127282.
- Raza, M.A. et al. (2022) “Maize/soybean strip intercropping produces higher crop yields and saves water under semi-arid conditions,” Frontiers in Plant Science, 13, 1006720. Available at: https://doi.org/10.3389/fpls.2022.1006720.
- Raza, M.A. et al. (2023) “Effect of crop combination on yield performance, nutrient uptake, and land use advantage of cereal/legume intercropping systems,” Field Crops Research, 304, 109144. Available at: https://doi.org/10.1016/j.fcr.2023.109144.
- Razi, F., Nura, N. and Zuyasna, Z. (2022) “Karakterisasi dan hubungan kekerabatan beberapa varietas unggul kedelai adaptif dataran rendah di Banda Aceh [Characterization and genetic relationship of soybean varieties lowland adaptive in Banda Aceh],” Jurnal Ilmiah Mahasiswa Pertanian, 7(2), pp. 70–79. Available at: https://jim.usk.ac.id/JFP/article/view/20118/9487 (Accessed: August 16, 2024).
- Ren, Y. et al. (2021) “Effect of sowing proportion on above- and below-ground competition in maize–soybean intercrops,” Scientific Reports, 11(1), 15760. Available at: https://doi.org/10.1038/s41598-021-95242-w.
- Ren, Y.Y. et al. (2017) “Influence of spatial arrangement in maize-soybean intercropping on root growth and water use efficiency,” Plant and Soil, 415(1), pp. 131–144. Available at: https://doi.org/10.1007/s11104-016-3143-3.
- Rizzo, G. et al. (2022) “Season-specific management strategies for rainfed soybean in the South American Pampas based on a seasonal precipitation forecast,” Agricultural Systems, 196, 103331. Available at: https://doi.org/10.1016/j.agsy.2021.103331.
- Seleiman, M.F. et al. (2021) “Drought stress impacts on plants and different approaches to alleviate its adverse effects,” Plants, 10(2), 259. Available at: https://doi.org/10.3390/plants10020259.
- Sjah, T. et al. (2022) “Risks of farming in wetland and dryland of North Lombok: Types, levels, and management,” IOP Conference Series: Earth and Environmental Science, 1107(1), 012053. Available at: https://doi.org/10.1088/1755-1315/1107/1/012053.
- Slameto et al. (2024) “Corn yield using zigzag planting system in dry land area of East Lampung Regency,” AIP Conference Proceedings, 2957(1), 040017. Available at: https://doi.org/10.1063/5.0184079.
- Suhartanto, B. et al. (2019) “Potential of forage production on dry land agriculture with mixed cropping pattern,” IOP Conference Series: Earth and Environmental Science, 387(1), 012061. Available at: https://doi.org/10.1088/1755-1315/387/1/012061.
- Suriadi, A. et al. (2021) “Optimal irrigation at various soil types for soybean production,” IOP Conference Series: Earth and Environmental Science, 648(1), 012081. Available at: https://doi.org/10.1088/1755-1315/648/1/012081.
- Susilawati, M. (2015) Perancangan percobaan [Experimental design]. Denpasar: Universitas Udayana, Fakultas MIPA.
- Temesgen, A., Fukai, S. and Rodriguez, D. (2015) “As the level of crop productivity increases: Is there a role for intercropping in smallholder agriculture,” Field Crops Research, 180, pp. 155–166. Available at: https://doi.org/10.1016/j.fcr.2015.06.003.
- Wang, C. et al. (2020) “Impacts of drought on maize and soybean production in Northeast China during the past five decades,” International Journal of Environmental Research and Public Health, 17(7), 2459. Available at: https://doi.org/10.3390/ijerph17072459.
- Wang, X. et al. (2020) “Analysis of grain yield differences among soybean cultivars under maize–soybean intercropping,” Agronomy, 10(1), 110. Available at: https://doi.org/10.3390/agronomy10010110.
- Willis, C. (2020) Homegrown soybeans are making a comeback in Indonesia thanks to new varieties developed using irradiation. International Atomic Energy Agency; IAEA. Available at: https://www.iaea.org/newscenter/news/homegrown-soybeans-are-making-a-comeback-in-indonesia-thanks-to-new-varieties-developed-using-irradiation (Accessed: August 16, 2024).
- Yang, F. et al. (2017) “Effect of narrow-row planting patterns on crop competitive and economic advantage in maize–soybean relay strip intercropping system,” Plant Production Science, 20(1), pp. 1–11. Available at: https://doi.org/10.1080/1343943X.2016.1224553.
- Yang, H., Zhang, W. and Li, L. (2021) “Intercropping: Feed more people and build more sustainable agroecosystems,” Frontiers of Agricultural Science and Engineering, 8(3), pp. 373–386. Available at: https://doi.org/10.15302/J-FASE-2021398.
- Zhang, Y. et al. (2015) “Row ratios of intercropping maize and soybean can affect agronomic efficiency of the system and subsequent wheat,” PLOS ONE, 10(6), e0129245. Available at: https://doi.org/10.1371/journal.pone.0129245.
- Zheng, H. et al. (2022) “Effects of row spacing and planting pattern on photosynthesis, chlorophyll fluorescence, and related enzyme activities of maize ear leaf in maize–soybean intercropping,” Agronomy, 12(10), 2503. Available at: https://doi.org/10.3390/agronomy12102503.
- Zhou, L. et al. (2024) “Maize//Soybean intercropping improves yield stability and sustainability in red soil under different phosphate application rates in Southwest China,” Agronomy, 14(6), 1222. Available at: https://doi.org/10.3390/agronomy14061222.
- Zhou, X.B. et al. (2020) “Double-double row planting mode at deficit irrigation regime increases winter wheat yield and water use efficiency in North China Plain,” Agronomy, 10(9), 1315. Available at: https://doi.org/10.3390/agronomy10091315.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecec791d-c08f-45ec-a184-1b92ae3c28dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.