PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Epoxidation of allyl-glycidyl ether with hydrogen peroxide over Ti-SBA-15 catalyst and in methanol medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the studies on the epoxidation of allyl-glycidyl ether (AGE) over the Ti-SBA-15 catalyst. In these studies an aqueous hydrogen peroxide was used as an oxidizing agent and as a solvent methanol was applied. The studies on the influence the following parameters: temperature (20–80°C), molar ratio of AGE/H2O2  (1:1.5–5:1), methanol concentration (10–90 wt%), catalyst content (1–9 wt%) and reaction time (15–240 min.) were carried out and the most favourable values of these parameters were chosen (temperature 80°C, molar ratio of AGE/H2O2 = 5:1, methanol concentration 30 wt%, catalyst content 3 wt% and the reaction time 240 min.). At these conditions the functions describing the process reached the following values: the selectivity of diglycidyl ether (DGE) 9.2 mol%, the conversion of AGE 13.9 mol% and the efficiency of H2O2  conversion 89.9 mol%.
Rocznik
Strony
9--14
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Organic Chemical Technology, ul. Pulaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Organic Chemical Technology, ul. Pulaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. Chemical Book (2015, September). Diglycidyl ether. Retrieved November 19, 2015, from http://www.chemicalbook.com/ChemicalProductProperty_EN_CB9725926.htm
  • 2. Kota, S., Devraj, R., Adibhatla Kali Satya, B.R. & Vankaiah Chowdary, N. (2009). W.O. Patent No. 2009153798. World Intellectual Property Organization.
  • 3. Sionkowska, A., Skopinska-Wisniewska, J., Gawron, M., Kozlowska, J. & Planecka, A. (2010). Chemical and thermal cross-linking of collagen and elastin hydrolysates. Int. J. Biol. Macromolec. 47, 570–577. DOI: 10.1016/j.ijbiomac.2010.08.004.
  • 4. Debdi, N., Starch, M.S., Lavaux, V., Canfield, L. & Van Reeth, I. (2006). UK Patent No. 2422605A. United Kingdom Trademark Office.
  • 5. Song, K.Y. (2015). U.S. Patent No. 20150010843. Washington, D.C.: U.S. Patent and Trademark Office.
  • 6. Ciampini, D. & Gino, L. (2013). U.S. Patent No. 20130271526. Washington, D.C.: U.S. Patent and Trademark Office.
  • 7. De Vries, T.S., Davies, D.R., Miller, M.C. & Cynecki, W.A. (2014). Kinetics of the Cationization of Cotton. Ind. Eng. Chem. Res. 53, 9686–9694. DOI: 10.1021/ie500836n.
  • 8. Mizusawa, A. (2012). U.S. Patent No. 20120060339. Washington, D.C.: U.S. Patent and Trademark Office.
  • 9. Czub, P., Bończa-Tomaszewski, Z., Penczek, P. & Pielichowski, J. (2002). Chemia i technologia żywic epoksydowych. Wyd. Naukowo-Techniczne. Warszawa. 226–231.
  • 10. Chen, L., Wang, Y., Ren, Q. & Cheng, X. (2014). CN Patent No. 104231999. China Patent & Trademark Office.
  • 11. Natu, P. (2011). U.S. Patent No. 20110049834. Washington, D.C.: U.S. Patent and Trademark Office.
  • 12. Iaych, K., Dumarçay, S., Fredon, E., Gérardin, C., Lemor, A. & Gérardin, P. (2011). Microwave-Assisted Synthesis of polyglycerol from glycerol carbonate. J. Appl. Polym. Sci. 120, 2354–2360. DOI: 10.1002/app.33446.
  • 13. Wu, L., Lal, J., Simon, K.A., Burton, E.A. & Luk, Y.Y. (2009). Nonamphiphilic Assembly in Water: Polymorphic Nature, Thread Structure, and Thermodynamic Incompatibility. J. Am. Chem. Soc. 131, 7430–7443. DOI: 10.1021/ja9015149.
  • 14. Mizuno, N., Kamata, K. & Yamaguchi, K. (2012). Oxidative functional group transformations with hydrogen peroxide catalyzed by a divanadium-substituted phosphotungstate. Catal. Today. 185, 157–161. DOI: 10.1016/j.cattod.2011.07.007.
  • 15. Kamata, K., Sugahara, K., Yonehara, K., Ishimoto, R. & Mizuno, N. (2011). Efficient Epoxidation of Electron-Deficient Alkenes with Hydrogen Peroxide Catalyzed by [γ-PW10O38V2(μ-OH)2]3–. Chem. Eur. J. 17, 7549–7559. DOI: 10.1002/chem.201101001.
  • 16. Wu, P., Liu, Y., He, M. & Tatsumi, T. (2004). A novel titanosilicate with MWW structure; Catalytic properties in selective epoxidation of diallyl ether with hydrogen peroxide. J. Catal. 228, 183–191. DOI: 10.1016/j.jcat.2004.09.001.
  • 17. Wróblewska, A., Makuch, E. & Mojta, E. (2016). Advanced Catalytic Materials. Photocatalysis and Other Current Trends. Norena, L.E. & Wang, J.A (Eds.) Studies on Obtaining Diglycidyl Ether from Allyl-Glycidyl Ether over the Mesoporous Ti-SBA-15 Catalyst (pp. 123–140). Rijeka, Croatia: InTech. DOI: 10.5772/61881.
  • 18. Gu, X.P., Ikeda, I. & Okahara, M. (1987). Stereoselective formation of allyl ethers by reaction of epoxides with organic chlorides under liquid-solid phase-transfer catalysis. Bull. Chem. Soc. Jpn. 60, 667–672. DOI: 10.1246/bcsj.60.667.
  • 19. Makuch, E. & Wróblewska, A. (2013). Preparation of titanium-silicate catalyst Ti-SBA-15. Chemik 67, 811–816.
  • 20. Berube, F., Kleitz, F. & Kaliaguine, S. (2008). A comprehensive study of titanium-substituted SBA-15 mesoporous materials prepared by direct synthesis. J. Phys. Chem. 112, 14403–14411. DOI: 10.1021/jp803853m.
  • 21. Wróblewska, A. & Makuch, E. (2014). Regeneration of the Ti-SBA-15 catalyst used in the process of allyl alcohol epoxidation with hydrogen peroxide. J. Adv. Oxid Technol. 17(1), 44–52.
  • 22. Wróblewska, A. & Makuch, E. (20120. The utilization of Ti-SBA-15 catalyst in the epoxidation of allylic alcohols. Reac. Kinet. Mech. Cat. 105, 451–468. DOI: 10.1007/s11144-0405-1
  • 23. Wróblewska, A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules 19, 19907–19992. DOI: 10.3390/molecules191219907.
  • 24. Moraczenko, Z. & Balcerzak, M. (2000). Separation, Preconcentration and Spectrophotometry in Inorganic Analysis. Elsevier 439–440.
  • 25. Davies, L.J., McMorn, P., Bethell, D., Bulman Page, P.C., King, F., Hancock, F.E. & Hutchings, G.J. (2001). Oxidation of crotyl alcohol using Ti-β and Ti-MCM-41 catalysts. J. Mol. Catal. A: Chemical 165, 243–247. DOI: 10.1016/S1381-1169(00)00430-1.
  • 26. Davies, L.J., McMorn, P., Bethell, D., Bulman Page, P.C., King, F., Hancock, F.E. & Hutchings, G.J. (2000). By-product formation causes leaching of Ti from the redox molecular sieve TS-1. Chem. Commun. 807–1808. DOI: 10.1039/b002055i.
  • 27. Davies, L.J. McMorn, P., Bethell, D., Bulman Page, P.C., King, F., Hancock, F.E. & Hutchings, G.J. (2001). Effect of preparation method on leaching Ti from the redox molecular sieve TS-1. Phys. Chem. Chem. Phys. 3, 632–639. DOI: 10.1039/b007651l.
  • 28. Davies, L.J., McMorn, P., Bethell, D., Bulman Page, P.C., King, F., Hancock, F.E. & Hutchings, G.J. (2001). Epoxidation of crotyl alcohol using Ti-containing heterogeneous catalysts: comments on the loss of Ti by leaching. J. Catal. 198, 319–327. DOI: 10.1006/jcat.2000.3139.
  • 29. Ziółek, M. (2004). Catalytic liquid-phase oxidation in heterogeneous system as green chemistry goal-advantages and disadvantages of MCM-41 used as catalyst. Catal. Today 90, 145–150. DOI: 10.1016/j.cattod.2004.04.020.
  • 30. Wróblewska, A. & Makuch, E. (2013). Studies on the deactivation of Ti-MCM-41 catalyst in the process of allyl alcohol epoxidation. Pol. J. Chem. Technol. 4(15), 111–115. DOI: 10.2478/pjct-2013-0078.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecea1d6e-aadb-4350-8d69-dd091db39124
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.