PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bifurcation analysis of torsional micromirror actuated by electrostatic forces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, static and dynamic behavior of an electrostatically actuated torsional micro-actuator is studied. The microactuator is composed of a micromirror and two torsional beams, which are excited with two electrodes. Unlike in the traditional microactuators, the electrostatic force is exerted to both sides of micromirror, so the model is exposed to a DC voltage applied from the ground electrodes. The static governing equation of the torsional microactuator is derived and the relation between rotation angle and the driving voltage is determined. Local and global bifurcation analysis is performed, considering torsional characteristics of the micro-beams. By solving static deflection equation, the fixed points of the actuator are obtained. Critical values of the applied voltage leading to qualitative changes in the microactuator behavior through a saddle-node or pitchfork bifurcations for different spatial condition are obtained. Furthermore, the effects of different gap and electrode sizes as well as beam lengths on the dynamic behavior are investigated. It is shown that an increase of the applied voltage leads the structure to an unstable condition by undergoing saddle-node and pitchfork bifurcations when the voltages ratio is zero and one, respectively.
Rocznik
Strony
95--111
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Department of Mechanical Engineering Amirkabir University of Technology Tehran, Iran
autor
  • Department of Mechanical Engineering University of Tabriz, Tabriz, Iran
Bibliografia
  • 1. M. Bao, H. Yang, H. Yin, S. Shen, Effects of electrostatic forces generated by the driving signal on capacitive sensing devices, Sensors and Actuators A: Physical, 84, 3, 213–219, 2000.
  • 2. S. Lee, R. Ramadoss, M. Buck, V.M. Bright, K.C. Gupta, Y.C. Lee, Reliability testing of flexible printed circuit-based RF MEMS capacitive switches, Microelectronics Reliability, 44, 2, 245–250, 2004.
  • 3. T. Sasayama, S. Suzuki, S. Tsuchitani, A. Koide, M. Suzuki, T. Nakazawa, N. Ichikawa, Highly reliable silicon micromachined physical sensors in mass production, Sensors and Actuators A: Physical, 54, 1–3, 714–717, 1996.
  • 4. R. Sattler, F. Plötz, G. Fattinger, G. Wachutka, Modeling of an electrostatic torsional actuator: demonstrated with an RF MEMS switch, Sensors and Actuators A: Physical, 97–98, 337–346, 2002.
  • 5. C.F.R. Mateus, C. Chih-Hao, C.J. Chang-Hasnain, S. Yang, D. Sun, R. Pathak, Tunable micromechanical optical filter using a torsional structure, [in:] Optical Fiber Communication Conference and Exhibit, 2002, OFC 2002, 2002.
  • 6. P.T. Savadkoohi, S. Colpo, B. Margesin, Novel design of a RF-MEMS tuneable capacitor based on electrostatically induced torsion, [in:] Design, Test, Integration & Packaging of MEMS/MOEMS, 2009, MEMS/MOEMS’09. Symposium on, 2009.
  • 7. K. Slava, D.I. Barnea, Bouncing mode electrostatically actuated scanning micro mirror for video applications, Smart Materials and Structures, 14, 6, 1281, 2005.
  • 8. F. Khatami, G. Rezazadeh, Dynamic response of a torsional micromirror to electrostatic force and mechanical shock, Microsystem Technologies,15, 4, 535–545, 2009.
  • 9. X.M. Zhang, F.S. Chau, C. Quan, Y.L. Lam, A.Q. Liu, A study of the static characteristics of a torsional micromirror, Sensors and Actuators A: Physical, 90, 1–2, 73–81, 2001.
  • 10. L.J. Hornbeck, 128∗128 deformable mirror device, Electron Devices, IEEE Transactions on, 30, 5, 539–545, 1983.
  • 11. T.-H. Lin, Implementation and characterization of a flexure-beam micromechanical spatial light modulator, Optical Engineering, 33, 11, 3643–3648, 1994.
  • 12. R.S. Muller, K.Y. Lau, Surface-micromachined microoptical elements and systems, [in:] Proceedings of the IEEE, 86, 8, 1705–1720, 1998.
  • 13. J.M. Younse, Mirrors on a chip, Spectrum, IEEE , 30, 11, 27–31, 1993.
  • 14. M. Younis, MEMS Linear and nonlinear statics and dynamics, 1st ed., Springer, 2011.
  • 15. M.I. Younis, F. Alsaleem, D. Jordy, The response of clamped–clamped microbeams under mechanical shock, International Journal of Non-Linear Mechanics, 42, 4, 643–657, 2007.
  • 16. J.-G. Guo, L.-J. Zhou, Y.-P. Zhao, Instability analysis of torsional MEMS/NEMS actuators under capillary force, Journal of Colloid and Interface Science, 331, 2, 458–462, 2009.
  • 17. O. Degani, E. Socher, A. Lipson, T. Lejtner, D.J. Setter, S. Kaldor, Y. Nemirovsky, Pull-in study of an electrostatic torsion microactuator, Journal of Microelectromechanical Systems, 7, 4, 373–379, 1998.
  • 18. G. Jian-Gang, Y.-P. Zhao, Influence of van der Waals and Casimir forces on electrostatic torsional actuators, Journal of Microelectromechanical Systems, 13, 6, 1027–1035, 2004.
  • 19. G. Rezazadeh, F. Khatami, A. Tahmasebi, Investigation of the torsion and Bendig effects on static stability of electrostatic torsional micromirrors,Microsystem Technologies, 13, 7, 715–722, 2007.
  • 20. W.H. Lin, Y.P. Zhao, Stability and bifurcation behaviour of electrostatic torsional NEMS varactor influenced by dispersion forces, Journal of Physics D: Applied Physics, 40, 6, 1649–1654, 2007.
  • 21. W.H. Lin, Y.P. Zhao, Casimir effect on the pull-in parameters of nanometer switches, Microsystem Technologies, 11, 2–3, 80–85, 2005.
  • 22. J. Ping Zhao, H. Ling Chen, J. Ming Huang, A. Qun Liu, A study of dynamic characteristics and simulation of MEMS torsional micromirrors, Sensors and Actuators A: Physical, 120, 1, 199–210, 2005.
  • 23. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill Education, 1970.
  • 24. W.-H. Lin, Y.-P. Zhao, Influence of damping on the dynamical behavior of the electrostatic parallel-plate and torsional actuators with intermolecular forces, Sensors, 7, 12, 3012–3026, 2007.
  • 25. S. Azizi, M.-R. Ghazavi, S. Esmaeilzadeh Khadem, G. Rezazadeh, C. Cetinkaya, Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam, Nonlinear Dynamics, 1–15, 2013.
  • 26. J.M. Huang, A.Q. Liu, Z.L. Deng, Q.X. Zhang, J. Ahn, A. Asundi, An approach to the coupling effect between torsion and bending for electrostatic torsional micromirrors, Sensors and Actuators A: Physical, 115, 1, 159–167, 2004.
  • 27. W.-H. Lin, Y.-P. Zhao, Nonlinear behavior for nanoscale electrostatic actuators with Casimir force, Chaos, Solitons & Fractals, 23, 5, 1777–1785, 2005.
  • 28. J.-G. Guo, Y.-P. Zhao, Dynamic stability of electrostatic torsional actuators with van der Waals effect, International Journal of Solids and Structures, 43, 3–4, 675–685, 2006.
  • 29. A.H. Nayfeh, B. Balachandran, Applied Nonlinear Dynamics, Wiley, 2004.
  • 30. H. Mobki, G. Rezazadeh, M. Sadeghi, F. Vakili-Tahami, M.-M. Seyyed-Fakhrabadi, A comprehensive study of stability in an electro-statically actuated micro-beam, International Journal of Non-Linear Mechanics, 48, 78–85, 2013.
  • 31. R. Seydel, Practical Bifurcation and Stability Analysis, 3rd ed., Springer, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ece908ba-64c3-43f5-ad67-77548180eb33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.