PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated Anoxic-Oxic Sequencing Batch Reactor Combined with Coconut Fiber Waste as Biofilm and Adsorbent Media

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coconut fiber waste has the potential to become a value-added product as a biofilm media and an adsorbent. The addition of biofilm media and adsorbent is important because it reduces the amount of sludge produced in wastewater. Furthermore, the quality of wastewater produced by the Integrated Anoxic-Oxic Sequencing Batch Reactor (IASBR)process with the addition of biofilm media and adsorbents can be used as clean water. The wastewater used comes from apartment wastewater. The Integrated Anoxic-Oxic Sequencing Batch Reactor was used to determine the optimal anoxic-aerobic processing time in a tropical climate. The study will further compare the efficiency of the two by using discarded coconut fiber as an additional adsorbent and biofilm media. The optimal adsorbent dose and weight of waste coconut fiber, as well as hydraulic retention time optimization, were all examined. As a result, clean water was discovered to be the primary product after the addition of adsorbent and biofilm media made from waste coconut fiber.
Rocznik
Strony
176--189
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Environmental Engineering Department, University of Pembangunan Nasional "Veteran" Jawa Timur, Rungkut Madya Street, Surabaya, 60294, Indonesia
  • Environmental Engineering Department, University of Pembangunan Nasional "Veteran" Jawa Timur, Rungkut Madya Street, Surabaya, 60294, Indonesia
Bibliografia
  • 1. Akin, B., Ugurlu, A. 2005. Monitoring and control of biological nutrient removal in sequencing batch reactor. Process Biochemistry, 40(8), 2873–2878. https://doi.org/10.1016/j.procbio.2005.01.001
  • 2. Artan, N., Wilderer, P., Orhon, D., Morgenroth, E., Özgür, N. 2001. The mechanism and design of sequencing batch reactor systems for nutrient removal – The state of the art. Water Science and Technology, 43(3), 53–60. https://doi.org/10.2166/wst.2001.0118
  • 3. Bakare, B.F., Shabangu, K., Chetty, M. 2017. Brewery wastewater treatment using laboratory-scale aerobic sequencing batch reactor. South African Journal of Chemical Engineering. https://doi.org/10.1016/j.sajce.2017.08.001
  • 4. Barros, A.R.M., Rollemberg, S.L. de S., de Carvalho, C. de A., Moura, I.H.H., Firmino, P.I.M., dos Santos, A.B. 2020. Effect of calcium addition on the formation and maintenance of aerobic granular sludge (AGS) in simultaneous fill/draw mode sequencing batch reactors (SBRs). Journal of Environmental Management, 255. https://doi.org/10.1016/j.jenvman.2019.109850
  • 5. Cervantes, F.J. 2009. Environmental Technologies to Treat Nitrogen Pollution. In Water Intelligence Online (Vol. 8). https://doi.org/10.2166/9781780401799
  • 6. Chen, L., Yang, X., Tian, X., Yao, S., Li, J., Wang, A., Yao, Q., Peng, D. 2017. Partial nitritation of stored source-separated urine by granular activated sludge in a sequencing batch reactor. AMB Express, 7(1). https://doi.org/10.1186/s13568–017–0354–9
  • 7. Chiu, Y.C., Lee, L.L., Chang, C.N., Chao, A.C. 2007. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. International Biodeterioration and Biodegradation, 59(1), 1–7. https://doi.org/10.1016/j.ibiod.2006.08.001
  • 8. Dutta, A., Sarkar, S. 2015. Sequencing Batch Reactor for Wastewater Treatment: Recent Advances. Current Pollution Reports, 1(3), 177–190. https://doi: 10.1007/s40726–015–0016-y
  • 9. Chen, Z., Zheng, Z., Dongyuan., Chen, H., Xu, Y. 2020, Continuous supercritical water oxidation treatment of oil-based drill cuttings using municipal sewage sludge as diluent https://doi.org/10.1016/j.jhazmat.2019.121225
  • 10. Fernandes, H., Jungles, M.K., Hoffmann, H., Antonio, R.V., Costa, R.H.R. 2013. Full-scale sequencing batch reactor (SBR) for domestic wastewater: Performance and diversity of microbial communities. Bioresource Technology, 132, 262–268. https://doi.org/10.1016/j.biortech.2013.01.027
  • 11. Gao, S., He, Q., Wang, H. 2020. Research on the aerobic granular sludge under alkalinity in sequencing batch reactors: Removal efficiency, metagenomic and key microbes. Bioresource Technology, 296, 122280. https://doi.org/10.1016/j.biortech.2019.122280
  • 12. Hendrasarie, N., Trilta, M.N. 2019. Removal of nitrogen-phosphorus in food wastewater treatment by the Anaerobic Baffled Reactor (ABR) and Rotating Biological Contactor (RBC). IOP Conference Series: Earth and Environmental Science, 245(1). https://doi:10.1088/1757–899X/1125/1/012089
  • 13. He, Q., Zhou, J., Wang, H., Zhang, J., Wei, L. 2016. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor. Bioresource Technology, 214, 1–8. https://doi.org/10.1016/j.biortech.2016.04.088
  • 14. Hendrasarie, Novirina, Maria, S.H. 2021. Combining Grease Trap and Moringa Oleifera as Adsorbent to Treat Wastewater Restaurant. South African Journal of Chemical Engineering, 37(December 2020), 196–205. https://doi.org/10.1016/j.sajce.2021.05.004
  • 15. Kargi, F., Uygur, A. 2003. Effect of carbon source on biological nutrient removal in a sequencing batch reactor. Bioresource Technology, 89(1), 89–93. https://doi.org/10.1016/S0960–8524(03)00031–2
  • 16. Keller, J., Subramaniam, K., Gösswein, J., Greenfield, P.F. 1997. Nutrient removal from industrial wastewater using single tank sequencing batch reactors. Water Science and Technology, 35(6), 137–144. https://doi.org/10.1016/S0273–1223(97)00104–2
  • 17. Li, J.P., Healy, M.G., Zhan, X.M., Rodgers, M. 2008. Nutrient removal from slaughterhouse wastewater in an intermittently aerated sequencing batch reactor. Bioresource Technology, 99(16), 7644–7650. htps://doi: 10.1016/j.biortech.2008.02.001
  • 18. Liu, L., Zeng, Z., Bee, M., Gibson, V., Wei, L., Huang, X., Liu, C. 2018. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor. Journal of Hazardous Materials, 349(January), 135–142.
  • 19. https:// doi: 10.1016/j.biortech.2017.02.025
  • 20. Liu, R., Li, S., Yu, N., Zhao, C., Gao, X., Gao, C. 2020. Performance evaluation and microbial community shift of sequencing batch reactors under different nickel (Ni(II)) concentrations. Environmental Technology and Innovation, 19(238), 100991. https://doi.org/10.1016/j.eti.2020.100991
  • 21. Liu, Y. Q., Kong, Y., Tay, J. H., Zhu, J. 2011. Enhancement of start-up of pilot-scale granular SBR fed with real wastewater. Separation and Purification Technology, 82(1), 190–196. doi.org/10.1016/j.seppur.2011.09.014
  • 22. Lorini, L., di Re, F., Majone, M., Valentino, F. 2020. High rate selection of PHA accumulating mixed cultures in sequencing batch reactors with uncoupled carbon and nitrogen feeding. New Biotechnology, 56(February), 140–148. https://doi.org/10.1016/j.nbt.2020.01.006
  • 23. Mohammed, H.M., Kheria, M.E. 2020. Municipal Waste Water Treatment Using Sequencing Batch Reactor (SBR). IOP Conference Series: Materials Science and Engineering, 881(1). https://doi.org/10.1088/1757–899X/881/1/012182
  • 24. Michalska, J., Greń, I., Zur, J., Wasilkowski, D., Mrozik, A. 2019. Impact of the biological cotreatment of the Kalina pond leachate on laboratory sequencing batch reactor operation and activated sludge quality. Water (Switzerland), 11(8). https://doi.org/10.3390/w11081539
  • 25. Obaja, D., MacÉ, S., Mata-Alvarez, J. 2005. Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater. Bioresource Technology, 96(1), 7–14. https://doi.org/10.1016/j.biortech.2004.03.002
  • 26. Ruan, J., Zhang, C., Li, Y., Li, P., Yang, Z., Chen, X., Huang, M., Zhang, T. 2017. Improving the efficiency of dissolved oxygen control using an online control system based on a genetic algorithm evolving FWNN software sensor. Journal of Environmental Management, 187(November), 550–559. https://doi.org/10.1016/j.jenvman.2016.10.056
  • 27. Ruan, X., Yin, J., Cui, X., Li, N., & Shen, D. 2020. Bioaugmentation and quorum sensing disruption as solutions to increase nitrate removal in sequencing batch reactors treating nitrate-rich wastewater. Journal of Environmental Sciences (China), 98(3), 179–185. https://doi.org/10.1016/j.jes.2020.06.007
  • 28. Sekarani, F.A., Hendrasarie, N. 2020. Reduction of Organic Parameters in Apartment Wastewater using Sequencing Batch Reactor by adding Activated Carbon Powder. IOP Conference Series: Earth and Environmental Science, 506(1). https://doi: 10.1088/1757–899X/1125/1/012089
  • 29. Schwarzenbeck, N., Borges, J.M., Wilderer, P.A. 2005. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Applied Microbiology and Biotechnology, 66(6), 711–718. https:/doi: 10.1007/s00253–004–1748–6
  • 30. Sirianuntapiboon, S., Sansak, J. 2008 Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes. Journal of Hazardous Materials, 159(2–3), 404–411. https://doi 10.1016/j.jhazmat.2008.02.031
  • 31. Trilta, M.N., Hendrasarie, N. 2016. Removal of organic load in communal wastewater by using the six-stage anaerobic baffled reactor (ABR). MATEC Web of Conference. https://doi.org/10.1051/matecconf/20165801023
  • 32. Uygur, A. 2006. Specific nutrient removal rates in saline wastewater treatment using sequencing batch reactor. Process Biochemistry, 41(1), 61–66. https://doi.org/10.1016/j.procbio.2005.03.068
  • 33. Von Sperling, M. 2007. Activated Sludge and Aerobic Biofilm Reactors. In IWA Publishing (Vol. 5, Issue 0). https://doi.org/ 10.2166/9781780402123 http://library.oapen.org/handle/20.500.12657/31039
  • 34. Wang, D. bo, Li, X. ming, Yang, Q., Zeng, G. ming, Liao, D. xiang, Zhang, J. 2008. Biological phosphorus removal in sequencing batch reactor with the single-stage oxic process. Bioresource Technology, 99(13), 5466–5473. https://doi.org/10.1016/j.biortech.2007.11.007
  • 35. Wang, H., Chen, N., Feng, C., Deng, Y., Gao, Y. 2020. Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: Performance, microbial behavior, and dissolved organic matter evolution. Chemosphere, 253, 126693. https:// doi 10.1016/j.chemosphere.2020.126693
  • 36. Wang, X., Li, J., Zhang, X., Chen, Z., Shen, J., Kang, J. 2021. Impact of hydraulic retention time on swine wastewater treatment by aerobic granular sludge sequencing batch reactor. Environmental Science and Pollution Research, 28(5), 5927–5937.
  • 37. https:// doi: 10.1007/s11356–020–10922-w
  • 38. Wei, Y., Ji, M., Li, R., Qin, F. 2012. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Management, 32(3), 448–455. https://doi.org/10.1016/j.wasman.2011.10.008 doi: 10.1016/j.biortech.2012.12.113
  • 39. Zhao, J., Yuan, Q., Sun, Y., Zhang, J., Zhang, D., Bian, R. 2021. Effect of fluoxetine on enhanced biological phosphorus removal using a sequencing batch reactor. Bioresource Technology, 320(PB), 124396. https://doi.org/10.1016/j.biortech.2021.12519
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ece76b3c-35d2-4e65-8830-c91dfbf3643f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.