PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method of Planes Normal Pressure for Slit Geometries in Molecular Dynamics Simulations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The resolution and convergence properties of the Method of Planes (MOP) local pressure tensor method is analyzed for a slit geometry in which a system of interacting particles is placed between movable walls composed of atoms. Boundarydriven Molecular Dynamics (BMD) simulations were performed for different situations in which solid or fluid phases are formed between crystalline or amorphous walls. It is shown that for these inhomogeneous, steady state structures the total force exerted by a wall atoms on the inside particles is consistent with the normal pressure component obtained from the MOP method if a sufficiently small integration time step is applied. The work demonstrates that the numerical errors associated with computing the MOP pressure can be non-negligible and should be a consideration when determining the BMD algorithm parameters.
Twórcy
  • Institute of Physics Pozna´n University of Technology Nieszawska 13a 60-965 Pozna´n, Poland
autor
  • Department of Mechanical Engineering Imperial College London, Exhibition Road South Kensington, London SW7 2AZ United Kingdom
autor
  • Department of Mechanical Engineering Imperial College London, Exhibition Road South Kensington, London SW7 2AZ United Kingdom
  • Institute of Molecular Physics Polish Academy of Sciences M. Smoluchowskiego 17 60-179 Poznań, Poland
Bibliografia
  • [1] M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press: 1987.
  • [2] Z. Zhou, Fluctuations and thermodynamics properties of the constant shear strain ensemble, J. Chem. Phys. 114, 8769-8774 (2001).
  • [3] H.W. Graben and J.R. Ray, Unified treatment of adiabatic ensembles, Phys. Rev. A 43, 4100-4103 (1991).
  • [4] J.R. Ray and A. Rahman, Statistical ensembles and molecular dynamics studies of anisotropic solids, J. Chem. Phys. 80, 4423-4428 (1984).
  • [5] H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. 72, 2384-2393 (1980).
  • [6] W.G. Hoover, Constant-pressure equations of motion, Phys. Rev. A 34, 2499-2500 (1986).
  • [7] J.R. Ray, Pressure fluctuations in statistical physics, Am. J. Phys. 50, 1035 (1982).
  • [8] M. Parrinello and A. Rahman, Crystal Structure and Pair Potentials: A Molecular-Dynamics Study, Phys. Rev. Lett. 45,1196–1199 (1980).
  • [9] M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52, 7182-7190 (1981).
  • [10] E. Hernández, Metric-tensor flexible-cell algorithm for isothermal-isobaric molecular dynamics simulations, J. Chem. Phys. 115, 10282-10290 (2001).
  • [11] D.J. Evans and G.P. Morriss, Isothermal-isobaric molecular dynamics, Chem. Phys. 77, 63-66 (1983).
  • [12] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Di-Nola and J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81, 3684-3690 (1984).
  • [13] J.-C. Wang and K.A. Fichthorn, A method for molecular dynamics simulation of confined fluids, J. Chem. Phys. 112, 8252-8259 (2000).
  • [14] M. Lupkowski and F. van Swol, Computer simulation of fluids interacting with fluctuating walls, J. Chem. Phys. 93, 737-745 (1990).
  • [15] M. Lupkowski and F. van Swol, Ultrathin films under shear, J. Chem. Phys. 95, 1995 (1991).
  • [16] H. Eslami, F. Mozaffari, J. Moghadasi and F. Müller-Plathe, Molecular dynamics simulation of confined fluids in isosurface-isothermal-isobaric ensemble, J. Chem. Phys. 129, 194702 (2008).
  • [17] H. Takaba, Y. Onumata and S.-I. Nakao, Molecular simulation of pressure-driven fluid flow in nanoporous membranes, J. Chem. Phys. 127, 054703 (2007).
  • [18] J. Cormier, J.M. Rickman and T.J. Delph, Stress calculation in atomistic simulations of perfect and imperfect solids, J. App. Phys. 89, 99-104 (2001).
  • [19] B.D. Todd, D.J. Evans and P.J. Davis, Pressure tensor for inhomogeneous fluids, Phys. Rev. E 52, 1627–1638 (1995).
  • [20] D.M. Heyes, E.R. Smith, D. Dini and T.A. Zaki, The equivalence between volume averaging and method of planes definitions of the pressure tensor at a plane, J. Chem. Phys. 135, 24512 (2011).
  • [21] J. Petravic and P. Harrowell, The boundary fluctuation theory of transport coefficients in the linear-response limit, J. Chem. Phys. 124, 014103 (2006).
  • [22] D.M. Heyes, E.R. Smith, D. Dini and H.A. Spikes and T.A. Zaki, Pressure dependence of confined liquid behavior subjected to boundary-driven shear, J. Chem. Phys. 136, 134705 (2012).
  • [23] S. Butler and P. Harrowell, Simulation of the coexistence of a shearing liquid and a strained crystal, J. Chem. Phys. 118, 4115-4126 (2003).
  • [24] S. Butler and P. Harrowell, Factors determining crystal–liquid coexistence under shear, Nature (London) 415, 1008-1011 (2002).
  • [25] J.H. Irving and J.G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics, J. Chem. Phys. 18, 817-829 (1950).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ece62805-dea9-44f9-977a-de4a3353173a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.