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To understand the complex cellular mechanisms ugeblin a biological system,
it is necessary to study protein-protein interawi¢PPIs) at the molecular level, in
which prediction of PPIs plays a significant role.this paper we propose a new
classification approach based on the sparse dis@imhanalysis [10] to predict ob-
ligate (permanent) and non-obligate (transient) tgineprotein interactions.
The sparse discriminant analysis [10] circumvehts limitations of the classical
discriminant analysis [4, 9] in the high dimensibloav sample size settings by in-
corporating inherently the feature selection intee toptimization procedure.
To characterize properties of protein interactiwa,proposed to use the binding free
energies. The performance of our proposed clasgsfieg5% + 5%.
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1. Introduction

Proteins are large molecules that constitute thie dfuthe cellular machinery
of any living organism or biological system. Regigla of biochemical pathways,
signaling cascades and transduction, cellular mptiene regulation, forming a
protein complex, modifying or carrying another giatare some of the essential
biological processes in living cells performed bgtpin-protein interactions (PPIs)
[5]. As a consequence, to understand the compléxdaremechanisms involved in



a biological system, it is necessary to study taeine of these interactions at the
molecular level, in which prediction of PPIs playsignificant role.

PPIs have been investigated in various ways, ifnglioth experimental (in
Vvivo or in vitro) and computational (in silico) apaches [2, 8]. Experimental ap-
proaches tend to be costly, labor intensive anféséom noise. Therefore, using
computational approaches for prediction of PP g@®od choice for many reasons.

There are different types of protein-protein intgiens that provide different
levels of information on different biological prases [5]. For example, based on
the affinity and stability, PPIs can be dividedointl) non-obligate complexes:
binding components (proteins) can form stable fitres and cannot exist in vivo
independently, 2) obligate complexes: componentsi@toform stable functional
structures on their own and can be stable in vidependently. Based on the dura-
tion and life time of the interactions, there amnsient complexes (temporarily in
vivo) and permanent ones (interactions are stafdeirgeversible). In general, all
obligate complexes are permanent. Except from sexaenples, all non-obligate
interactions can be considered as transient.

Although interfaces have been the main subjecttudysto predict protein-
protein interactions, an accuracy of 70% has bedapendently achieved by sev-
eral different groups [7, 8, 11, 12]. These appheadave been carried out by ana-
lyzing a wide range of parameters, including sabraenergies, amino acid com-
position, conservation, electrostatic energies, apdrophobicity and different
classification strategies. Up to this moment, testlyesults {8%) were obtained
in [7] by using contact and binding free energisdeatures and the discriminant
analysis [4, 9] combined with the initial selectiohfeatures to cope with the limi-
tations of the discriminant analysis [4, 9] in tiigh-dimensional, low-sample size
(HDLSS) settings (i.e. when the number of featisegeater than the sample size).
But there are two main weak points in the work Fifst, the initial feature selec-
tion method causes that some important informatidast. Second, the Authors in
[7] did not provide the method for the estimatidnvariance of their classifier.
So, we do not know what is the error rate of thesult 78%.

In this paper, we propose the new classificatiqor@gch based on the sparse
discriminant analysis [10] to predict obligate (panent) and non-obligate (transi-
ent) protein-protein interactions. The sparse disoant analysis [10] circumvents
the limitations of discriminant analysis in the HB& by incorporating inherently
the feature selection into the optimization procediés a results, the new method
[10] finds the sparse projection directions. Torelagerize properties of protein
interaction, we proposed to use the binding freergies. The performance of our
proposed classifier is 75% * 5%.

In this study we use discriminant analysis for gredictive purposes only
(predictive discriminant analysi®DA), i.e. to predict group membership given a
number of continuous variables. The study for @rplg group separation or
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group differences in terms of variable importandgch is the aim of théescrip-
tive discriminant analysigDDA) will be the subject of our future researah i
which the correlation structure will be examinede lso plan to compare it with
other variable importance methods like for exantiplear ordering.

There is an important distinction between DDA amAPIn DDA, adding, of
variables to a statistical analysis does not takayafrom effect size, and often
increases uncorrected effect sizes. However, in Plever variables can vyield
greater classification accuracy, whereas in DDA diewariables cannot yield
greater discrimination. Thus, good features setkfile PDA are those giving the
best prediction performance.

This paper is organized as follows. Section 2 $hgnesents the classical
discriminant analysis as well as its sparse versidre proposed classification
method for protein-protein interaction is descrile&ection 3 while the results of
the conducted experiments with this method — iti@eel. Section 5 comprises the
conclusions.

2. Fisher and Sparse regularized linear discriminahanalyses

Fisher Linear Discriminant analysis (FLDA) [4, 8]a multivariate technique
which is concerned with the search for a lineandfarmation that reduces the
dimension of a givep-dimensional statistical model ¢p(q <p) dimensions, while
maximally preserving the discriminatory informatitor the several classes within
the model.

Formally, suppose that there &elasses and let; j=1,...,n be vectors of
observations from thei-th class, i= 1,...,k. Set n=n+...+n and let
Xop = (1o Xy s ees Xt % ), wherep is a dimensionality of an input space.
FLDA determines a linear mappihgi.e. agx p matrix A, that maximizes the so-
called Fisher criteriond. (1):

Je (A =tr((AS, A)'(AS A) (1)

where S, :Zikzl p(m-m m- "l and S, :Zikzl nS are the between-class
and the average within-class scatter matrix, rasety,
1

n-1
m is the mean vector of clagsp is it's a priori probability, andm:zik:l Qm

2?'21( x — m)( x— m" is the within-class covariance matrix of class

is the overall mean. FLDA maximizes the ratio ofwWeen-class scatter to average
within-class scatter in the lower-dimensional sp&ggtimizing (1) comes down to
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determining an eigenvalue decomposition&jfss, and taking the rows oA to

equal theq eigenvectors corresponding to thdargest eigenvalues. There are no
more thanmin(p,k—1) eigenvectors corresponding to nonzero eigenvalues.

In the high-dimensional, low-sample size (HDLSS}isgs, the within-class
covariance matrix§, is singular and the classical FLDA breaks dowrnvesa

extensions have been proposed to overcome thidepnabut all of them possess
the data pilling problem [6]. To ameliorate thi®lplem, some sparse version of
LDA have been proposed.

In our approach, to circumvent this problem, wepadhe sparse linear dis-
criminant approactisida) from [10] that incorporates feature selectio FLDA.
The term “sparse” means that the discriminant vedtave only a small number of
nonzero components. The underlying assumptionais #tmong the large number
of variables there are many irrelevant or redundamiables for the purpose of
classification. This method is based on the conmedf FLDA and a generalized
eigenvalue problem, stated formally by the follogvtheorem [10].

Theorem
Supposes, is a positive definite matrix and denote its Cekledecomposition as
S, = R R (R, is an upper triangular matrix). Lét, be kx p matrix, Vi, ...,V,
(g< min(p, k-1)) denote the eigenvectors @,186 corresponding to the larg-
est eigenvaluesl, >...> A, A=[a,,...,a,], B=[4,....,4,]. For />0 let AB
be the solution to the following problem (2):

K 2 q
TL!‘EHRLT H,— AB H, | +/1_21 BT (S)B, subjecttoA A= 1., 2)
i= j=

where:
Hy, =/n (X =X)" is thei-th row of the matrix

H, = (\/E(Yl = %),/ N % —_x))T , € is a vector of ones with lengthy .
Then [3’]., j=1...9, span the same linear space\4s j =1,....9.

The following method of regularization is applied[iL0] to circumvent the
singularity problem and to obtain the sparse lingiacriminants: i.e. the firsq

sparse discriminant directior)Sl,...,,B’q are defined as the solutions to the follow-
ing optimization problem (3)

IR -ag ] e st JaSalal o
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subject to A" A= | g Where B=[8,,....5,1, H,B H is the 1-norm of the vector

B, , the samel is used for alty directions, different, ;’s are allowed to penalize

different discriminant directions.

According to the theorem stated above, the solutiathe optimization prob-
lem (2) is independent of the value &f but this does not necessarily imply that
the solution of the regularized problem (3) is atstependent ofl . However, our
empirical study suggests that the solution is \&aple whend varies in a wide
range, for example in (0.01, 10000).

We can use K-fold cross validation (CV) [9] to slthe optimal parameters

A, but when the dimension of the input data is verge, the numerical algo-
rithm becomes time consuming and we camlgt=...= A, ;. The tuning parame-
ter y controls the strength of the regularization of mhatrix S, , the large values

will bias too muchS, towards identity matrix (high degree of regulatiaa).
In our empirical studies, we find that the resalts not sensitive to the choice pf
if a small value that is less than 0.1 is usedyunstudies we sef =0.05. More
careful studies of choice gf are left for future research.

The above problem can be numerically solved byrradténg optimization
overA andB [10] and the resulting algorithm is summarizebel

Regularized sparse LDA (rSLDA) algorithm (based 10})
1. Form the matrices from the input data:

e (x)'
enK (7$< )T

Hy = (VA (R =%...a/1, (%= )

2. Compute upper triangular matri®, from the Cholesky decomposition of:
[SNH/U(S ) j such tha{SN+ytr(S ) j R R
Y p

3. Solve theay independent optimization problems

m[!n B WW)B, -2V W3 + 4,3 Hl i=1,...9
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- H, 5 H,R o
where Wi ppp = (\/ﬁ ERJ Vios oy :[ . i
4. Compute SVD:

R, (HgHg) B=UDVT™ and letA=UV'

5. Repeat steps 3 and 4 until converges.

3. Protein-protein interaction classification metha

To characterize properties of protein interactiwa,proposed to use the bind-
ing free energies. These were computed uBasgContac{3], which obtains their
fast estimates. FastContact delivers the electiostaergy, solvation free energy,
and the top 20 maximum and minimum values for:

1) residues contributing to the binding free energy,

2) ligand residues contributing to the solvation feeergy,

3) ligand residues contributing to the electrostatiergy,

4) receptor residues contributing to the solvatioe &eergy,

5) receptor residues contributing to the electrostatiergy,

6) receptor-ligand residue solvation constants,

7) receptor-ligand residue electrostatic constants.

Thus, all these values and the total solvation eladtrostatic energy values com-
pose a total of 282 features characterizing interac

To create a dataset for classification, we usedotheclassified dataset from
previous study [7] containing 62 transient and Bbgate complexes as two differ-
ent classes for classification. Each complex tedisn the form of chains for ligand
and receptor respectively. The relevant data atimiistructure of each complex
was obtained from the Protein Data Bank (PDB) [ddl ahen obtaining the 282
features by invoking FastContact.

Due to the fact that the number of features (282jreater than the number of
samples in a dataset (137), we have HDLSS setmgje apply sparse regularized
linear discriminant analysis for the calculationdi$criminant directions, i.e. the
algorithm sparse rLDA described above.

For the classification of the samples in the neseriininant space, we applied
the nearest mean classifi¢d, 9] as the classification algorithm. The neareean
(centroid, prototype) classifier assigns to neweobations the label of the class of
training samples whose mean is closest to the wisen.
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4. Experimental results

In our experiments we have used the dataset ofpi8in complexes de-
scribed in [11]. 75 samples in this dataset betorthe first class (i.e. “obligate inter-
actions”) and 62 samples to the second class‘fiom-obligate interactions”). This
dataset is randomly divided into a “training settidtesting set” in a ratio of 4:1.

As we have only two classek £ 2), there is only one discriminant direction
B, (@ =1). Using all variables in constructing the disériamt vector 5 might

cause the overfitting of the training data, reggltin high testing error rate. More-

over it is computationally demanding, so sparsiioczawould be a good choice.
Denote the number of significant variables involwedpecifying the discri-

minant directionS, (i.e. giving the best prediction), to Io@ To find these most

significant variables we have performed the expeninwith varying values ah.
For a given value am, only them maximum values of the coordinates of the vec-

tor B, (so callecbetavalues) are left, the rest is zeroed.
Fig. 2 shows the components of vecfgrobtained by the rSLDA algorithm in one

of experiments converted to the absolute valuessartdd in the ascending order.
We leave onlym biggest values, zeroing all others. We keep tddkdices

of these biggest values and modify the origighlleaving onlym biggest values.

These values are used to cast the original 282fdiineal vector onto a one-
dimensional space. The projection of the samples fthe protein dataset uses
only thesan non-zero coefficients.

Then, classification is performed in such new disgrant space by the near-
est mean (centroid) classifier. The classificati@mformance is measured on the
separate test set.

The results are shown in Fig. 1. We can observethieserror rate of the near-
est mean classifier grows rapidly and then deceeagth the rise ofn, up to 28
(error = ~25% + 5% measured on the testing setgnTlor bigger values ah,
almost a constant error rate was observed.

From the plot it is clear that if we specify m=28the number of component
variables in discriminant vectgf, — sparse LDA algorithm can discriminate the

two classes fairly well (the classifier performarmce75% + 5%) (where 5 is the
confidence interval).

These 28 input features (“selected” by the rSLDgodathm) are the most
significant for classification (i.e. giving the hedassification performance). These
are the following from the full set of 282 featuesrresponding to the ascending

order of the absolute value of the coefficients posing vectorf3,):

202 198 281 200 48 42 243 203 47 133 128 121 161 16
157 132 49 156 46 134 241 131 155 158 1271B5A1
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Among these 28 features — 13 are from the receptidues contributing to
the desolvation free energy, but these are not th@rbeginning of the above list.
It can be observed that in each of the 7 groupmefgetic features — only features
with extreme (min or max) contribution to the enemye always selected. The
features from the beginning of the list are thasenfthe receptor residues contrib-
uting to the electrostatics energy. One may corecthdt electrostatic energy is the
most important in the prediction of obligate/norigdte protein-protein interac-
tions. Electrostatic energy involves a long-rang&eriaction and occur between
charged atoms of two interacting proteins.

Thus, the rSLDA algorithm does suggest which ctunstits are the most im-
portant in the classification of interactions.
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Figure 1. The average classification error rate as a funaticthe number of variables
using nearest centroid method on the projected ddtee local minimum is at 28
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Figure 2. Components off obtained by the rSLDA algorithm in one of expenise
converted to absolute values and sorted in ascgmdder (description in text)
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5. Conclusion

We have proposed a classification approach foigat#inon-obligate (transi-
ent) protein-protein complexes. We have used reigeld version of sparse linear
discriminant analysis algorithm [10] for featurdarextion as well as for input vari-
able selection. To discriminate between two typlegrotein interactions: obligate
and non-obligate, we have used the “energetic fesituThese are based on the
binding free energy defined as the sum of the datioh and electrostatic ener-
gies. These were computed effectively using thekgge FastContact [3]. The
results on the protein-protein interactions databetved that using only 28 from
282 input variables enables the classificatiorhefrnentioned two types of interac-
tions with the performance @6% + 5%. Among the most important features are
those from residues contributing to the electrasttergy.

The hypothesis on the importance of the electriostatergy in the prediction
of obligate/non-obligate protein-protein interaososhould be confirmed by the
additional experiments on bigger protein datasBtss will be the subject of our
future research.
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