PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Observation of Changes Deriving on the Surface of Polymer Materials Imitating Biological Structures - Presentation of the Method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective: This study aimed to develop a measurement system to investigate the mechanical behavior of materials under applied force. The system was designed to evaluate the relationship between displacement and applied force and to analyze material deformation. Methods: The measurement system comprised two high-resolution cameras, a robotic arm, and programmed sensors, all mounted on a custom-designed support structure. The components were selected based on a thorough review of the literature and the specific requirements for material testing. During the experiments, the system induced controlled deflection in the central region of the specimen. Surface deformation was tracked using custom-developed software, which reconstructed a 3-D model of the material based on specific tracking points. The displacement data were then used to generate a force-displacement curve. Hysteresis fields were computed to further analyze the material’s mechanical response. Results: The system successfully reconstructed accurate 3-D surface models of the specimens during mechanical deformation. Force-displacement curves generated from the measurements provided detailed insights into the mechanical properties of the materials. The analysis of the hysteresis fields revealed deviations from expected behavior, offering information on the material’s response to applied force. Conclusions: The measurement system proved to be an effective tool for characterizing material behavior under applied force. Its ability to integrate precise hardware with custom software allowed for accurate 3-D modeling and reliable force-displacement analysis. The results demonstrated the system’s applicability in material research and quality control. Future work may focus on extending its capabilities to a broader range of materials and testing conditions.
Rocznik
Strony
70--80
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • BioModel Academic Scientific Club, Faculty of Fundamental Problems of Technology, BioAddMed Academic Scientific Club, Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology; Smoluchowskiego Str. 25, 50-372 Wrocław, Poland
Bibliografia
  • 1. Humphrey JD. Review Paper: Continuum biomechanics of soft biological tissues. Proc R Soc A Math Phys Eng Sci. 2003;459(2029):3-46. doi: doi.org/10.1098/rspa.2002.1060.
  • 2. Wei J, McFarlin BL, Wagoner Johnson AJ. A multi-indent approach to detect the surface of soft materials during nanoindentation. J Mater Res. 2016;31(17):2672-85. doi: doi.org/10.1557/jmr.2016.265.
  • 3. Bab AMRF El, Tamura T, Sugano K, Tsuchiya T, Tabata O, Eltaib MEH, et al. [Internet]. Design and Simulation of a Tactile Sensor for Soft-Tissue Compliance Detection. IEEJ Trans Sensors Micromachines. 2008;128(5):186-92. doi: doi.org/10.1541/ieejsmas.128.186.
  • 4. Cox MAJ, Driessen NJB, Bouten CVC, Baaijens FPT. Mechanical characterization of anisotropic planar biological soft tissues using large indentation: a computational feasibility study. J Biomech Eng. 2006;128(3):428-36. doi: doi.org/10.1115/1.2187040.
  • 5. Holzapfel GA. Similarities between soft biological tissues and rubberlike materials. In: Holzapfel GA, editor. Constitutive Models for Rubber IV [Internet]. Routledge; 2017. p. 607-17 [cited 2024 Dec 18]. Available from: https://www.taylorfrancis.com/books/9781351458276/chapters/10.1201/9781315140216-105. doi: doi.org/10.1201/9781315140216-105.
  • 6. Fratzl P. Collagen: Structure and mechanics. Fratzl P, editor. Collagen: Structure and Mechanics. Boston, MA: Springer US; 2008. p. 1-506. doi: doi.org/10.1007/978-0-387-73906-9.
  • 7. Kong W, Lyu C, Liao H, Du Y. Collagen crosslinking: Effect on structure, mechanics and fibrosis progression. Biomed Mater. 2021;16(6):062005. doi: https://www.doi.org/10.1088/1748-605X/ac2b79.
  • 8. Lech Ł, Iwaniec M. The meaning of the piezoelectric effect and streaming potential in bone remodeling. Vib Phys Syst. 2010;24:251-8.
  • 9. Liu J, Yan D, Pang W, Zhang Y. Design, fabrication and applications of soft network materials. Mater Today. 2021;49:324-50. doi: doi.org/10.1016/j.mattod.2021.05.007.
  • 10. Sheiko SS, Dobrynin AV. Architectural Code for Rubber Elasticity: From Supersoft to Superfirm Materials. Macromolecules. 2019;52(20):7531-46. doi: doi.org/10.1021/acs.macromol.9b01127.
  • 11. Ortiz JSE, Lagos RE. A viscoelastic model to simulate soft tissue materials. J Phys Conf Ser. 2015;633:012099. doi: doi.org/10.1088/1742-6596/633/1/012099.
  • 12. Tadeusiewicz R. Neural networks as a tool for modeling of biological systems. Bio-Algorithms and Med-Systems. 2015;11(3):135-44. doi: doi.org/10.1515/bams-2015-0021.
  • 13. Tadeusiewicz R, Śmietański J. Pozyskiwanie obrazów medycznych oraz ich przetwarzanie, analiza, automatyczne rozpoznawanie i diagnostyczna interpretacja. STN, Kraków 2011.
  • 14. Jablonski M, Tadeusiewicz R. Vision-based detection of events using line-scan camera. In: 2016 Second International Conference on Event- -based Control, Communication, and Signal Processing (EBCCSP) [Internet]. IEEE; 2016. p. 1-3 [cited 2024 Dec 18]. Available from: http://ieeexplore.ieee.org/document/7605275/. doi: https://doi.org/10.1109/EBCCSP.2016.7605275.
  • 15. Kłeczek P, Dyduch G, Jaworek-Korjakowska J, Tadeusiewicz R. Automated epidermis segmentation in histopathological images of human skin stained with hematoxylin and eosin. In: Gurcan MN, Tomaszewski JE, editors. Medical Imaging 2017: Digital Pathology [Internet]. 2017. p. 101400M [cited 2024 Dec 18]. Available from: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2249018. doi: https://doi.org/10.1117/12.2249018.
  • 16. Bejgam A, Rao S, Pandya HJ. Engineering approaches for characterizing soft tissue mechanical properties: A review. Clin Biomech. 2019;69:127-40. doi: https://doi.org/10.1016/j.clinbiomech.2019.07.016.
  • 17. Rus G, Faris IH, Torres J, Callejas A, Melchor J. Why Are Viscosity and Nonlinearity Bound to Make an Impact in Clinical Elastographic Diagnosis? Sensors. 2020;20(8):2379. doi: https://doi.org/10.3390/s20082379.
  • 18. Song E, Huang Y, Huang N, Mei Y, Yu X, Rogers JA. Recent advances in microsystem approaches for mechanical characterization of soft biological tissues. Microsystems Nanoeng. 2022;8(1):77. doi: https://doi. org/10.1038/s41378-022-00412-z.
  • 19. Kathavate PN, Amudhavel J. Optimized convolutional neural network for soft tissue sarcoma diagnosis. Multimed Tools Appl. 2023;82(3):4497-515. doi: https://doi.org/10.1007/s11042-022-13429-3.
  • 20. Long B, Zhang H, Zhang H, Chen W, Sun Y, Tang R et al. Deep learning models of ultrasonography significantly improved the differential diagnosis performance for superficial soft-tissue masses: a retrospective multicenter study. BMC Med. 2023;21(1):405. doi: https://doi.org/10.1186/s12916-023-03099-9.
  • 21. Choi JH, Ro JY. The Recent Advances in Molecular Diagnosis of Soft Tissue Tumors. Int J Mol Sci. 2023;24(6):5934. doi: https://doi.org/10.3390/ ijms24065934.
  • 22. Hartley A, Zissermann A. Multiple View Geometry in Computer Vision [Internet]. Second. Cambridge University Press, 2004. p. 655 [cited 2024 Dec 18]. Available from: https://www.cambridge.org/core/product/identifier/9780511811685/type/book. doi: https://doi.org/10.1017/ CBO9780511811685.
  • 23. Cui H, Lin Z, Zhang J, Meng W. Multiple image photogrammetric strategy for unmanned airship-based system. J Inf Comput Sci. 2008;5(4):1613-18.
  • 24. Pang HE, Biljecki F. 3D building reconstruction from single street view images using deep learning. Int J Appl Earth Obs Geoinf. 2022;112:102859. doi: https://doi.org/10.1016/j.jag.2022.102859.
  • 25. Toth C. Photogrammetric Computer Vision: Statistics, Geometry, Orientation and Reconstruction. Photogramm Eng Remote Sens. 2017;83(10):661-2. doi: https://doi.org/10.14358/PERS.83.10.661.
  • 26. Carrasco M, Mery D, Concha A, Velázquez R, De Fazio R, Visconti P. An Efficient Point-Matching Method Based on Multiple Geometrical Hypotheses. Electronics. 2021;10(3):246. doi: https://doi.org/10.3390/electronics10030246.
  • 27. Prince SJD. Computer Vision: Models, Learning, and Inference. 1st ed. Cambridge University Press; 2012. p. 600.
  • 28. Maiti A, Chakravarty D. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images. Springerplus. 2016;5(1):932. doi: https://doi.org/10.1186/s40064-016-2425-9.
  • 29. Ruchay A, Dorofeev K, Kalschikov V, Kober A. Accuracy analysis of surface reconstruction from point clouds, In: 2020 International Conference on Information Technology and Nanotechnology (ITNT), IEEE; 2020 [cited 2024 Dec 18]. p. 1-4. doi: https://doi.org/10.1109/ITNT49337.2020.9253197.
  • 30. Zhang S, Yau S-T. High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method. Opt Express. 2006;14(7):2644. doi: https://doi.org/10.1364/OE.14.002644.
  • 31. Berkels B, Bauer S, Ettl S, Arold O, Hornegger J, Rumpf M. Joint surface reconstruction and 4D deformation estimation from sparse data and prior knowledge for marker‐less Respiratory motion tracking. Med Phys. 2013;40(9). doi: https://doi.org/10.1118/1.4816675.
  • 32. Woodham RJ. Photometric method for determining surface orientation from multiple images. Opt Eng. 1980;19(1):139-44. doi: https://www.doi.org/10.1117/1.595736.
  • 33. Horn BKP, Schunck BG. Determining Optical Flow. Artif Intell. 1981;17(1-3): 185-203. doi: https://www.doi.org/10.1016/0004-3702(81)90024-2.
  • 34. Barron JL, Fleet DJ, Beauchemin SS. Performance of Optical Flow Techniques. Int J Comput Vis. 1994;12(1):43-77. doi: https://www.doi. org/10.1007/BF01420984.
  • 35. Trucco E, Verri A. Introductory Techniques for 3-D Computer Vision. New Jersey: Prentice Hall, 1998. p. 343.
  • 36. Bouguet J. Pyramidal Implementation of the Lucas-Kanade Feature Tracker: Description of the Algorithm. Intel Corporation, Microprocessor Research Labs, 2000. [cited 2024 Dec 18]. Available from: http://robots.stanford.edu/cs223b04/algo_tracking.pdf.
  • 37. Baker S, Matthews I. Lucas-Kanade 20 Years On: A Unifying Framework. Intern J Comput Vis. 2004;56(3):221-55. doi: https://www.doi.org/10.1023/B:VISI.0000011205.11775.fd.
  • 38. Timoshenko S, Goodier JN. Theory of Elasticity. New York: McGraw-Hill, 2010.
  • 39. Fung YC. Foundations of Solid Mechanics. New Jersey: Prentice-Hall, 1965.
  • 40. Boresi AP, Schmidt RJ. Advanced Mechanics of Materials. Hoboken, New Jersey: John Wiley & Sons, 2021.
  • 41. Roark RJ, Young WC, Plunkett R. Formulas for Stress and Strain. J Appl Mech. 1976;43(3):522. doi: doi.org/10.1115/1.3423917.
  • 42. Kim D-H, Gratchev I. Application of Optical Flow Technique and Photogrammetry for Rockfall Dynamics: A Case Study on a Field Test. Remote Sens. 2021;13(20):4124. doi: doi.org/10.3390/rs13204124.
  • 43. Becker F, Petra S, Schnörr C. Optical Flow, In: Scherzer O, editor. Handbook of Mathematical Methods in Imaging. New York, NY: Springer New York; 2015 [cited 2024 Dec 18]. p. 1945-2004. doi: https://www.doi.org/10.1007/978-1-4939-0790-8_38.
  • 44. Zhang Z. A Flexible New Technique for Camera Calibration. IEEE Trans Patt Anal Mach Intell. 2000;22(11):1330-34. doi: https://www.doi.org/10.1109/34.888718.
  • 45. Fung Y-C. Biomechanics: Mechanical Properties of Living Tissues. Springer New York, NY, 1993. doi: https://www.doi.org/10.1007/978-1- 4757-2257-4.
  • 46. Szeliski R. Computer Vision. Algorithms and Applications. Springer. Cham: Springer International Publishing, 2022. doi: https://www.doi. org/10.1007/978-3-030-34372-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecdb0022-bf08-49c7-8624-73b1b1c6f677
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.