PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of localized surface plasmon resonance-based refractive index sensor using optical fiber

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper proposes a design of a localized surface plasmon resonance-based refractive index sensor for the detection of a chemical compound availing unclad geometry of the optical fiber. The geometry is explored to analyze the sensing behavior and coupling phenomenon at the metal-dielectric interface. The finite element method (FEM) is applied numerically to evaluate the analytical change in the reflectance spectra of the fiber model by inoculating potassium nitrate compound. The resonance shift and reflectance of the surface plasmon resonance (SPR) signal obtained after the optimization of structural parameters enhance the sensing performance of the prototype. The sensor exhibits a maximum sensitivity of 80.2919 rad/RIU for a 1.56 high refractive index analyte and minimum sensitivity of 2.3446 rad/RIU for a 1.33 low refractive index analyte. The proposed sensor is modelled in such a way that it can be employed in various sensing applications for a wide range of refractive indices.
Czasopismo
Rocznik
Strony
85--96
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Thapar Institute of Engineering and Technology, Punjab-147004, India
autor
  • Thapar Institute of Engineering and Technology, Punjab-147004, India
Bibliografia
  • [1] CHAUHAN M., SINGH V.K., Review on recent experimental SPR/LSPR based fiber optic analyte sensors, Optical Fiber Technology 64, 2021: 102580. https://doi.org/10.1016/j.yofte.2021.102580
  • [2] SABRI N., ALJUNID S.A., SALIM M.S., AHMAD R.B., KAMARUDDIN R., Toward optical sensors: Review and applications, Journal of Physics: Conference Series 423(1), 2013: 012064. https://doi.org/10.1088/1742-6596/423/1/012064
  • [3] SEPÚLVEDA B., ANGELOMÉ P.C., LECHUGA L.M., LIZ-MARZÁN L.M., LSPR-based nanobiosensors, Nano Today 4(3), 2009: 244-251. https://doi.org/10.1016/j.nantod.2009.04.001
  • [4] GUPTA B.D., VERMA R.K., Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications, Journal of Sensors, Vol. 2009, 2009: 979761. https://doi.org/10.1155/2009/979761
  • [5] DORMENY A.A., SOHI P.A., KAHRIZI M., Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures, Results in Physics 16, 2020: 102869. https://doi.org/10.1016/j.rinp.2019.102869
  • [6] CAUCHETEUR C., GUO T., ALBERT J., Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection, Analytical and Bioanalytical Chemistry 407, 2015: 3883-3897. https://doi.org/10.1007/s00216-014-8411-6
  • [7] HAMMOND J.L., BHALLA N., RAFIEE S.D., ESTRELA P., Localized surface plasmon resonance as a biosensing platform for developing countries, Biosensors 4(2), 2014: 172-188. https://doi.org/10.3390/bios4020172
  • [8] LODEWIJKS K., VAN ROY W., BORGHS G., LAGAE L., VAN DORPE P., Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements, Nano Letters 12(3), 2012: 1655-1659. https://doi.org/10.1021/nl300044a
  • [9] CUSANO A., PILLA P., CONTESSA L., IADICICCO A., CAMPOPIANO S., CUTOLO A., GIORDANO M., GUERRA G., High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water, Applied Physics Letters 87(23), 2005: 234105. https://doi.org/10.1063/1.2136437
  • [10] KRÄMER J., KANG R., GRIMM L.M., DE COLA L., PICCHETTI P., BIEDERMANN F., Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids, Chemical Reviews 122(3), 2022: 3459-3636. https://doi.org/10.1021/acs.chemrev.1c00746
  • [11] ALAHI M.E.E., MUKHOPADHYAY S.C., Detection methods of nitrate in water: a review, Sensors and Actuators A: Physical 280, 2018: 210-221. https://doi.org/10.1016/j.sna.2018.07.026
  • [12] SEPAHVAND M., GHASEMI F., HOSSEINI H.M., Accelerated leaching of unmodified gold nanoparticles for environmental and biological monitoring of nitrite and nitrate, ChemistrySelect 7(3), 2022: e202103094. https://doi.org/10.1002/slct.202103094
  • [13] PRODI L., Luminescent chemosensors: From molecules to nanoparticles, New Journal of Chemistry 29(1), 2005: 20-31. https://doi.org/10.1039/B411758A
  • [14] BARBILLON G., BIJEON J.-L., PLAIN J., DE LA CHAPELLE M.L., ADAM P.-M., ROYER P., Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance, Surface Science 601(21), 2007: 5057-5061. https://doi.org/10.1016/j.susc.2007.09.005
  • [15] PATHAK A.K., RAHMAN B.M.A., SINGH V.K., KUMARI S., Sensitivity enhancement of a concave shaped optical fiber refractive index sensor covered with multiple Au nanowires, Sensors 19(19), 2019: 4210. https://doi.org/10.3390/s19194210
  • [16] SZUNERITS S., BOUKHERROUB R., Sensing using localised surface plasmon resonance sensors, Chemical Communications 48(72), 2012: 8999-9010. https://doi.org/10.1039/C2CC33266C
  • [17] CAO J., SUN T., GRATTAN K.T.V., Gold nanorod-based localized surface plasmon resonance biosensors: A review, Sensors and Actuators B: Chemical 195, 2014: 332-351. https://doi.org/10.1016/j.snb.2014.01.056
  • [18] SINGH P.K., SINGH V.K., CHUALYA S.K., Numerical analysis of LSPR based fiber sensor for low refractive index detection, Optik 224, 2020: 165704. https://doi.org/10.1016/j.ijleo.2020.165704
  • [19] SHARMA A.K., PANDEY A.K., KAUR B., A review of advancements (2007–2017) in plasmonics-based optical fiber sensors, Optical Fiber Technology 43, 2018: 20-34. https://doi.org/10.1016/j.yofte.2018.03.008
  • [20] CENTENO A., Improved Drude-Lorentz dielectric function for gold nanospheres, arXiv:2012.05090 [physics.optics]. https://doi.org/10.48550/arXiv.2012.05090
  • [21] AL-JANABY N., AL-DERGAZLY A., Fabrication of multi-mode tip fiber sensor based on surface plasmon resonance (SPR), Sustainable Engineering and Innovation 2(1), 2020: 10-17. https://doi.org/10.37868/sei.v2i1.27
  • [22] COLOMBELLI A., MANERA M.G., RELLA R., VASANELLI L., FEM modeling of nanostructures for sensor application, [In] Di Natale C., Ferrari V., Ponzoni A., Sberveglieri G., Ferrari M. [Eds.] Sensors and Microsystems. Lecture Notes in Electrical Engineering, Vol. 268, Springer, Cham. https://doi.org/10.1007/978-3-319-00684-0_55
  • [23] ELVERS B., Ullmann’s Encyclopedia of Industrial Chemistry, Vol. 17, Hoboken, NJ, Verlag Chemie, 1991.
  • [24] TARIQ S.M., FAKHRI M.A., SALIM E.T., HASHIM U., ALSULTANY F.H., Design of an unclad single-mode fiber-optic biosensor based on localized surface plasmon resonance by using COMSOL Multiphysics 5.1 finite element method, Applied Optics 61(21), 2022: 6257-6267. https://doi.org/10.1364/AO.458175
  • [25] RAKIBUL ISLAM M., IFTEKHER A.N.M., ANZUM M.S., RAHMAN M., SIRAZ S., LSPR based double peak double plasmonic layered bent core PCF-SPR sensor for ultra-broadband dual peak sensing, IEEE Sensors Journal 22(6), 2022: 5628-5635. https://doi.org/10.1109/JSEN.2022.3149715
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecda88d5-ab32-4b13-9567-2919fe4bd55a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.