PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conductive Heat Transfer Prediction of Plain Socks in Wet State

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, an algebraic model and its experimental verification was carried out to investigate the effect of moisture content on the heat loss that takes place due to conduction of sock fabrics. The results show that increasing moisture content in the studied socks caused a significant increase in their conductive heat loss. Plain knitted socks with different fiber composition were wetted to a saturated level, and then their moisture content was reduced stepwise. When achieving the required moisture content, the socks samples were characterized by the Alambeta testing instrument for heat transfer. Three different existing modified mathematical models for the thermal conductivity of wet fabrics were used for predicting thermal resistance of socks under wet conditions. The results from both ways are in very good agreement for all the socks at a 95% confidence level. In the above-mentioned models, the prediction of thermal resistance presents newly a combined effect of the real filling coefficient and thermal conductivity of the so-called “wet” polymers instead of dry polymers. With these modifications, the used models predicted the thermal resistance at different moisture levels. Predicted thermal resistance is converted into heat transfer (due to conduction) with a significantly high coefficient of correlation.
Rocznik
Strony
391--403
Opis fizyczny
Bibliogr. 54 poz.
Twórcy
  • Faculty of Textile Engineering, Technical University of Liberec, Czech Republic
autor
  • Faculty of Textile Engineering, Technical University of Liberec, Czech Republic
autor
  • Faculty of Textile Engineering, Technical University of Liberec, Czech Republic
autor
  • Faculty of Textile Engineering, Technical University of Liberec, Czech Republic
autor
  • Faculty of Textile Engineering, Technical University of Liberec, Czech Republic
  • Faculty of Textile Engineering, Technical University of Liberec, Czech Republic
  • Institute for Textile Machinery and Textile High-Performance Materials Technology (ITM), Technical University, Dresden, Germany
Bibliografia
  • [1] Woo, S. S., Shalev, I., Barker, R. L. (1994). Heat and moisture transfer through nonwoven fabrics: Part I: Heat transfer. Textile Research Journal, 64(3), 149-162.
  • [2] Kawabata, S. (1986). Measurement of anisotropic thermal conductivity of single fiber. Sen’i Kikai Gakkaishi (Journal of the Textile Machinery Society of Japan), 39(12), T184-T186.
  • [3] Bhattacharjee, D., Kothari, V. K. (2009). Heat transfer through woven textiles. International Journal of Heat and Mass Transfer, 52(7–8), 2155-2160.
  • [4] Boughattas, A., Benltoufa, S., Hes, L., Musaddaq, A., Fayala, F. (2018). Thermo-physiological properties of woven structures in wet state. Industria Textila, 69, 298-303.
  • [5] Wang, F., Lai, D., Shi, W., Fu, M. (2017). Effects of fabric thickness and material on apparent ‘wet’conductive thermal resistance of knitted fabric ‘skin’on sweating manikins. Journal of Thermal Biology, 70, 69-76.
  • [6] Oglakcioglu, N., Marmarali, A. (2010). Thermal comfort properties of cotton knitted fabrics in dry and wet states. Tekst ve Konfeksiyon, 20(3), 213-217.
  • [7] Chen, Y. S., Fan, J., Zhang, W. (2003). Clothing thermal insulation during sweating. Textile Research Journal, 73(2), 152-157.
  • [8] Kuklane, K., Holmér, I. (1998). Effect of sweating on insulation of footwear. International Journal of Occupational Safety and Ergonomics, 4(2), 123-136.
  • [9] Kuklane, K. (2009). Protection of feet in cold exposure. Industrial Health, 47(3), 242-253.
  • [10] Fogarty, A. L., Barlett, R., Ventenat, V., Havenith, G. (2006). Regional foot sweat rates during a 65-minute uphill walk with a backpack. 2006-2007.
  • [11] Taylor, N. A., Caldwell, J. N., Mekjavic, I. B. (2006). The sweating foot: Local differences in sweat secretion during exercise-induced hyperthermia. Aviation, Space, and Environmental Medicine, 77(10), 1020-1027.
  • [12] Kuklane, K., Gavhed, D., Fredriksson, K. (2001). A field study in dairy farms: Thermal condition of feet. International Journal of Industrial Ergonomics, 27(6), 367-373.
  • [13] West, A. M., Tarrier, J., Hodder, S., Havenith, G. (2019). Sweat distribution and perceived wetness across the human foot: The effect of shoes and exercise intensity. Ergonomics, 62(11), 1450-1461.
  • [14] Young, A. J., Roberts, D. E., Scott, D. P., Cook, J. E., Mays, M. Z., et al. (1992). Sustaining health and performance in the cold: A pocket guide to environmental medicine aspects of cold-weather operations. Army Research Inst of Environmental Medicine Natick MA.
  • [15] Cleland, A. C. (1990). Food refrigeration processes. Elsevier applied science.
  • [16] Cleland, A. C., Earle, R. L. (1977). A comparison of analytical and numerical methods of predicting the freezing times of foods. Journal of Food Science, 42(5), 1390-1395.
  • [17] Mangat, A. E., Bajzik, V., Lubos, H. E. S., Mazari, F. B. (2015). The use of artificial neural networks to estimate thermal resistance of knitted fabrics. Tekstil ve Konfeksiyon, 25(4), 304-312.
  • [18] Kanat, Z. E., Özdil, N. (2018). Application of artificial neural network (ANN) for the prediction of thermal resistance of knitted fabrics at different moisture content. The Journal of the Textile Institute, 109(9), 1247-1253.
  • [19] Akyol, U., Erhan Akan, A., Durak, A. (2015). Simulation and thermodynamic analysis of a hot-air textile drying process. The Journal of the Textile Institute, 106(3), 260-274.
  • [20] Qian, X., Fan, J. (2006). Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind. The Annals of Occupational Hygiene, 50(8), 833-842.
  • [21] Schuhmeister, J. Ber. (1877). K Akad Wien (Math-Naturw Klasse) 76, 283.
  • [22] Baxter, S. T. (1946). The thermal conductivity of textiles. Proceedings of the Physical Society, 58(1), 105.
  • [23] Bogaty, H., Hollies, N. R., Harris, M. (1957). Some thermal properties of fabrics: part I: The effect of fiber arrangement. Textile Research Journal, 27(6), 445-449.
  • [24] Militký, J., Becker, C. (2011). Selected topics of textile and material Science. Select Topics of Textile and Material Science, 404.
  • [25] Hollies, R. S., Bogaty, H. (1965). Some thermal properties of fabrics: part II: The influence of water content. Textile Research Journal, 35(2), 187-190.
  • [26] Mangat, M. M., Hes, L. (2014). Thermal resistance of denim fabric under dynamic moist conditions and its investigational confirmation. Fibres & Textiles in Eastern Europe, 22, 101-105.
  • [27] Mangat, M. M., Hes, L., Bajzík, V. (2015). Thermal resistance models of selected fabrics in wet state and their experimental verification. Textile Research Journal, 85(2), 200-210.
  • [28] Mansoor, T., Hes, L., Bajzik, V., Norman, M. T. (2020). Novel method on thermal resistance prediction and thermo-physiological comfort of socks in a wet state. Textile Research Journal, 90(17–18), 1987–2006.
  • [29] Mansoor, T., Hes, L., Bajzik, V. (2020). A new approach for thermal resistance prediction of different composition plain socks in wet state (Part 2). Autex Research Journal, 1.
  • [30] Maxwell, J. C. (1954). A treatise on electricity and magnetism. New York: Dover.
  • [31] Eucken, A. (1940). Allgemeine gesetzmäßigkeiten für das wärmeleitvermögen verschiedener stoffarten und aggregatzustände. Forsch auf dem Gebiet des Ingenieurwesens A, 11(1), 6-20.
  • [32] Brailsford, A. D., Major, K. G. (1964). The thermal conductivity of aggregates of several phases, including porous materials. British Journal of Applied Physics, 15(3), 313.
  • [33] Wang, J., Carson, J. K., North, M. F., Cleland, D. J. (2006). A new approach to modelling the effective thermal conductivity of heterogeneous materials. International Journal of Heat and Mass Transfer, 49(17–18), 3075-3083.
  • [34] Carson, J. K. (2002). Prediction of the thermal conductivity of porous foods: a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Engineering, Massey University, Palmerston North, New Zealand.
  • [35] Mansoor, T., Siddique, H. F., Ali, A., Komarkova, P., Havelka, A., et al. (2018). Wrinkle free plaited knitted fabrics without pre-heat setting. The Journal of the Textile Institute, 109(3), 307-311.
  • [36] Mansoor, T., Hes, L., Skenderi, Z., Siddique, H. F., Hussain, S., et al. (2019). Effect of preheat setting process on heat, mass and air transfer in plain socks. The Journal of Textile Institute, 110(2), 159-170.
  • [37] Yoon, H. N., Buckley, A. (1984). Improved comfort polyester: Part I: Transport properties and thermal comfort of polyester/cotton blend fabrics. Textile Research Journal, 54(5), 289-298.
  • [38] Bories, S., Mojtabi, A., Prat, M., Quintard, M. (1995). Transferts de chaleur dans les milieux poreux. Ed. Techniques Ingénieur.
  • [39] Dubois, A. (1999). Porosite des tissus: Correlations entre les methodes de determination de la permeabilite a l’air. Eurédia.
  • [40] Guidoin, R., King, M., Marceau, D., Cardou, A., De La Faye, D., et al. (1987). Textile arterial prostheses: Is water permeability equivalent to porosity? Journal of Biomedical Materials Research, 21(1), 65-87.
  • [41] Hsieh, Y. L. (1995). Liquid transport in fabric structures. Textile Research Journal, 65(5), 299-307.
  • [42] Dyck, V. (1998). Desktop X-ray microscopy and microtomography. Journal of Microscopy, 191(2), 151-158.
  • [43] Pressure measuring device for medical compression and support stockings (Salzman, Group Switzerland), https://www.swisslastic.ch/files/Druckmessgeraete/MST-MKV-EN_SP_JP_CN-2014-4p.pdf.
  • [44] Hes, L., Dolezal, I. (1989). New method and equipment for measuring thermal properties of textiles. Sen’i Kikai Gakkaishi (Journal of the Textile Machinery Society of Japan), 42(8), T124-T128.
  • [45] Wiley-VCH (ed). (2008). Ullmann’s Fibers, 2 Volumes. Wiley, https://books.google.cz/books?id=R9c8wgEACAAJ.
  • [46] Bobeth, W. (1993). Thermisches Verhalten. In: Textile Faserstoffe. Springer, pp. 253-284.
  • [47] Meloun, M., Militky, J. (2011). Statistical data analysis: A practical guide. Woodhead Publishing, Limited. doi: 10.1533/9780857097200.
  • [48] Visualization of local thickness in 3D (Bruker Micro CT Academ). (2014). 1, 2-3.
  • [49] Abdolmaleki, S., Jeddi, A. A. A., Amani, M. (2012). Estimation on the 3D porosity of plain knitted fabric under uniaxial extension. Fibers and Polymers, 13(4), 535-541.
  • [50] Doczyova, K., Glombikova, V., Komarkova, P. (2014). Application of microtomography in textile metrology. Tekstilec, 57(1).
  • [51] Finck, J. L. (1930). Mechanism of heat flow in fibrous materials. Bureau of Standards Journal of Research, 5(5), 973-984.
  • [52] Reddy, K. S., Karthikeyan, P. (2010). Combinatory models for predicting the effective thermal conductivity of frozen and unfrozen food materials. Advances in Mechanical Engineering, 2, 901376.
  • [53] Naka, S., Kamata, Y. (1977). Thermal conductivity of wet fabrics. Journal of the Textile Machinery Society of Japan, 23(4), 114-119.
  • [54] Mao, N., Russell, S. J. (2007). The thermal insulation properties of spacer fabrics with a mechanically integrated wool fiber surface. Textile Research Journal, 77(12), 914-922.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecd133d3-0d46-4694-8f1f-6389e25bf0c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.