PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Machine learning-based analysis of English lateral allophones

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and self-organizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’ and phonology experts’ speech was selected for analyses. For the purpose of the present study, a sub-list of 103 words containing the English alveolar lateral phoneme /l/ was compiled. The list includes ‘dark’ (velarized) allophonic realizations (which occur before a consonant or at the end of the word before silence) and 52 ‘clear’ allophonic realizations (which occur before a vowel), as well as voicing variants. The recorded signals were segmented into allophones and parametrized using a set of descriptors, originating from the MPEG 7 standard, plus dedicated time-based parameters as well as modified MFCC features proposed by the authors. Classification methods such as ANNs, the kNN and the SOM were employed to automatically detect the two types of allophones. Various sets of features were tested to achieve the best performance of the automatic methods. In the final experiment, a selected set of features was used for automatic evaluation of the pronunciation of dark /l/ by non-native speakers.
Rocznik
Strony
393--405
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
  • Multimedia Systems Department, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Institute of Data Science and Digital Technologies, Vilnius University, Akademijos 4, LT-04812 Vilnius, Lithuania
  • Laboratory of Audio Acoustics, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Multimedia Systems Department, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Multimedia Systems Department, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • [1] Ali, A.A., Van der Spiegel, J., Mueller, P., Haentjens, G. and Berman, J. (1999). An acoustic-phonetic feature-based system for automatic phoneme recognition in continuous speech, Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, ISCAS’99, Orlando, FL, USA, Vol. 3, pp. 118–121.
  • [2] Almajai, I., Cox, S., Harvey, R. and Lan, Y. (2016). Improved speaker independent lip reading using speaker adaptive training and deep neural networks, Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, pp. 2722–2726.
  • [3] Aubanel, V. and Nguyen, N. (2010). Automatic recognition of regional phonological variation in conversational interaction, Speech Communication 52(6): 577–586.
  • [4] Baghdasaryan, A.G. and Beex, A. (2011). Automatic phoneme recognition with segmental hidden Markov models, 2011 Conference Record of the 45th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, pp. 569–574.
  • [5] Baken, R.J. and Orlikoff, R.F. (2000). Clinical Measurement of Speech and Voice, 2nd Edn., Singular Thomson Learning, San Diego, CA.
  • [6] Benezeth, Y., Bachman, G., Le-Jan, G., Souviraà-Labastie, N. and Bimbot, F. (2011). BL-Database: A French Audiovisual Database for Speech Driven Lip Animation Systems, PhD thesis, INRIA, Rennes.
  • [7] Biswas, A., Sahu, P.K. and Chandra, M. (2015). Multiple camera in car audio-visual speech recognition using phonetic and visemic information, Computers & Electrical Engineering 47(2015): 35–50.
  • [8] Brocki, Ł. and Marasek, K. (2015). Deep belief neural networks and bidirectional long-short term memory hybrid for speech recognition, Archives of Acoustics 40(2): 191–195.
  • [9] Cooke, M., Barker, J., Cunningham, S. and Shao, X. (2006). An audio-visual corpus for speech perception and automatic speech recognition, The Journal of the Acoustical Society of America 120(5): 2421–2424.
  • [10] Czyzewski, A., Bratoszewski, P., Hoffmann, P., Lech, M. and Szczodrak, M. (2017a). The project IDENT: Multimodal biometric system for bank client identity verification, International Conference on Multimedia Communications, Services and Security, Poznań, Poland, pp. 16–32.
  • [11] Czyzewski, A., Kostek, B., Bratoszewski, P., Kotus, J. And Szykulski, M. (2017b). An audio-visual corpus for multimodal automatic speech recognition, Journal of Intelligent Information Systems 49(2): 167–192.
  • [12] Czyzewski, A., Kostek, B., Ciszewski, T. and Majewicz, D. (2013). Language material for English audiovisual speech recognition system development, The Journal of the Acoustical Society of America 134/5: 4069.
  • [13] Dalka, P., Bratoszewski, P. and Czyzewski, A. (2014). Visual lip contour detection for the purpose of speech recognition, 2014 International Conference on Signals and Electronic Systems (ICSES), Pozna´n, Poland, pp. 1–4.
  • [14] Fox, N.A., O’Mullane, B.A. and Reilly, R.B. (2005). Valid: A new practical audio-visual database, and comparative results, International Conference on Audio and Video-Based Biometric Person Authentication, Rye Brook, NY, USA, pp. 777–786.
  • [15] Giegerich, H.J. (1992). English Phonology: An Introduction, Cambridge University Press, Cambridge.
  • [16] Giles, S.B. and Moll, K.L. (1975). Cinefluorographic study of selected allophones of English /i/, Phonetica 31(3–4): 206–227.
  • [17] Gillick, L. and Cox, S.J. (1989). Some statistical issues in the comparison of speech recognition algorithms, 1989 International Conference on Acoustics, Speech, and Signal Processing, ICASSP-89, Glasgow, UK, pp. 532–535.
  • [18] Jadczyk, T. and Ziółko, M. (2015). Audio-visual speech processing system for polish with dynamic Bayesian network models, Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science (EECSS 2015), Barcelona, Spain, pp. 13–14.
  • [19] Kim, H.-G., Moreau, N. and Sikora, T. (2006). MPEG-7 Audio and Beyond: Audio Content Indexing and Retrieval, John Wiley & Sons, Chichester.
  • [20] Kłosowski, P. (2017). Statistical analysis of orthographic and phonemic language corpus for word-based and phoneme-based Polish language modelling, EURASIP Journal on Audio, Speech, and Music Processing 2017(1): 5.
  • [21] Korvel, G., Kurowski, A., Kostek, B. and Czyzewski, A. (2019). Speech analytics based on machine learning, in G. Tsihrintzis et al. (Eds.), Machine Learning Paradigms, Springer, Cham, pp. 129–157.
  • [22] Kostek, B., Kupryjanow, A., Zwan, P., Jiang, W., Raś, Z.W., Wojnarski, M. and Swietlicka, J. (2011). Report of the ISMIS 2011 contest: Music information retrieval, International Symposium on Methodologies for Intelligent Systems, Warsaw, Poland, pp. 715–724.
  • [23] Kozierski, P., Sadalla, T., Drgas, S. and Dąbrowski, A. (2016). Allophones in automatic whispery speech recognition, 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Mi˛edzyzdroje, Poland, pp. 811–815.
  • [24] Kunka, B., Kupryjanow, A., Dalka, P., Bratoszewski, P., Szczodrak, M., Spaleniak, P., Szykulski, M. and Czyzewski, A. (2013). Multimodal English corpus for automatic speech recognition, Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznań, Poland, pp. 106–111.
  • [25] Kupryjanow, A. and Czyzewski, A. (2013). Real-time speech signal segmentation methods, Journal of the Audio Engineering Society 61(7/8): 521–534.
  • [26] Makowski, R. and Hossa, R. (2014). Automatic speech signal segmentation based on the innovation adaptive filter, International Journal of Applied Mathematics and Computer Science 24(2): 259–270, DOI: 10.2478/amcs-2014-0019.
  • [27] Marasek, K. and Gubrynowicz, R. (2005). Multi-level annotation in SpeeCon Polish speech database, in L. Bolc et al. (Eds.), Intelligent Media Technology for Communicative Intelligence, Springer, Berlin/Heidelberg, pp. 58–67.
  • [28] McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages, Psychometrika 12(2): 153–157.
  • [29] Mermelstein, P. (1976). Distance measures for speech recognition, psychological and instrumental, in C.H. Chen (Ed.), Pattern Recognition and Artificial Intelligence, Vol. 116, Academic Press, New York, NY, pp. 374–388.
  • [30] Misra, H., Ikbal, S., Bourlard, H. and Hermansky, H. (2004). Spectral entropy based feature for robust ASR, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Montreal, Canada, EPFL-CONF-83132.
  • [31] Mitterer, H., Reinisch, E. and McQueen, J.M. (2018). Allophones, not phonemes in spoken-word recognition, Journal of Memory and Language 98(2018): 77–92.
  • [32] Mroueh, Y., Marcheret, E. and Goel, V. (2015). Deep multimodal learning for audio-visual speech recognition, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD, Australia, pp. 2130–2134.
  • [33] Noda, K., Yamaguchi, Y., Nakadai, K., Okuno, H.G. and Ogata, T. (2015). Audio-visual speech recognition using deep learning, Applied Intelligence 42(4): 722–737.
  • [34] Pampalk, E., Rauber, A. and Merkl, D. (2002). Using smoothed data histograms for cluster visualization in self-organizing maps, International Conference on Artificial Neural Networks, Madrid, Spain, pp. 871–876.
  • [35] Panek, D., Skalski, A., Gajda, J. and Tadeusiewicz, R. (2015). Acoustic analysis assessment in speech pathology detection, International Journal of Applied Mathematics and Computer Science 25(3): 631–643, DOI: 10.1515/amcs-2015-0046.
  • [36] Piotrowska, M., Korvel, G., Kostek, B., Rojczyk, A. and Czyzewski, A. (2018). Objectivization of phonological evaluation of speech elements by means of audio parametrization, 2018 11th International Conference on Human System Interaction (HSI), Gdańsk, Poland, pp. 325–331.
  • [37] Plewa, M. and Kostek, B. (2015). Music mood visualization using self-organizing maps, Archives of Acoustics 40(4): 513–525.
  • [38] Recasens, D. (2012). A cross-language acoustic study of initial and final allophones of /l/, Speech Communication 54(3): 368–383.
  • [39] Song, Y., Wang, W.-H. and Guo, F.-J. (2009). Feature extraction and classification for audio information in news video, International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR 2009, Baoding, China, pp. 43–46.
  • [40] Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring complex and big data, International Journal of Applied Mathematics and Computer Science 27(4): 669–679, DOI: 10.1515/amcs-2017-0046.
  • [41] Trojanová, J., Hrúz, M., Campr, P. and Železny, M. (2008). Design and recording of Czech audio-visual database with impaired conditions for continuous speech recognition, Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC’08), Marrakech, Morocco, pp. 1–5.
  • [42] Venkateswarlu, R. and Kumari, R.V. (2011). Novel approach for speech recognition by using self-organized maps, 2011 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), Udaipur, India, pp. 215–222.
  • [43] Wang, Y. and Van Hamme, H. (2011). Gaussian selection using self-organizing map for automatic speech recognition, International Workshop on Self-Organizing Maps, Espoo, Finland, pp. 218–227.
  • [44] Żelasko, P., Ziółko, B., Jadczyk, T. and Skurzok, D. (2016). AGH corpus of Polish speech, Language Resources and Evaluation 50(3): 585–601.
  • [45] Ziółko, B. and Ziółko, M. (2009). Time durations of phonemes in Polish language for speech and speaker recognition, Language and Technology Conference, Poznań, Poland, pp. 105–114.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eccb7ac2-a198-4c47-a03d-a88d92b1fc60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.