PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Friction force reduction efficiency in sliding motion under tangential vibrations of elastic support

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The efficiency of reducing the friction force in sliding motion under the influence of forced vibrations of an elastic substrate significantly depends on the direction of these vibrations in relation to the sliding direction. This article presents a comparison of computational models developed by the authors to estimate the friction force in sliding motion under longitudinal and transverse tangential vibrations of the substrate. Fundamental differences between these models are discussed, and the results of comparative analyses of the impact of tangential vibrations on the friction force depending on their direction are presented. In the developed models describing the friction force, dynamic friction models of Dahl and Dupont and the so-called LuGre model were utilised. The analyses were performed as a function of the sliding velocity and two basic parameters of vibration, which are frequency f and amplitude u0. It has been shown that under longitudinal vibrations, the key parameter, which determines the occurrence of friction force reduction at a given driving velocity vd, is the amplitude va of vibration velocity. However, the level of this reduction cannot be determined unequivocally based on the value of this parameter alone since the identical value va can be obtained at different magnitudes of the frequency and amplitude of vibrations, and the reduction level is a nonlinear function of these parameters. The results of simulation analyses were verified experimentally.
Rocznik
Strony
101--109
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, al. Piastów 19, 70-310 Szczecin, Poland
  • Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, al. Piastów 19, 70-310 Szczecin, Poland
Bibliografia
  • 1. Czon Y, Su H, Qian N, He J, Gu J, Xu J, et al. Ultrasonic vibration assisted grinding of silicone carbide ceramics based on actual ampli-tude measurement: grinding force and surface quality. Ceramics In-ternational. 2021;47(11): 15433–15441. https://doi.org/10.1016/j.ceramint.2021.02.109
  • 2. Gao G, Xia Z, Su T, Xiang D, Zhao B. Cutting force model of longitu-dinal–torsional ultrasonic-assisted milling Ti-6Al-4V based in tool flank wear. Journal of Materials Processing Technology. 2021; 291:117042. https://doi.org/10.1016/j.jmatprotec.2021.117042
  • 3. Jamshidi H, Nategh MJ. Theoretical and experimental investigation of the frictional behavior of the tool-chip interface in ultrasonic-vibration assisted turning. International Journal of Machine Tools and Manufacture. 2013;65:1–7. https://doi.org/10.1016/j.ijmachtools.2012.09.004
  • 4. Khajehzadeh M, Bootaripour O, Razfar MR. Finite element simulation and experimental investigation of residual stresses in ultrasonic as-sisted turning. Ultrasonics. 2020;108:106208. https://doi.org/10.1016/j.ultras.2020.106208
  • 5. Li D, Tang J, Czen H, Shao W. Study on grinding force model in ultrasonic vibration-assisted grinding alloy structural steel. The Inter-national Journal of Advanced Manufacturing Technology. 2019; 101:1467–1479. https://doi.org/10.1007/s00170-018-2929-2
  • 6. Liu Y, Geng D, Zhou Z, Jiang X, Zhang D. A study of on strengthen-ing and machining integrated ultrasonic peening drilling of Ti-6Al-4V. Materials & Design. 2021; 212:110238. https://doi.org/10.1016/j.matdes.2021.110238
  • 7. Ning F, Cong W. Ultrasonic vibration-assisted (UV-A) manufacturing processes: state of art and future perspectives. Journal of Manufac-turing Processes. 2020;51:174–190. https://doi.org/10.1016/j.jmapro.2020.01.028
  • 8. Skeleton RC. Effect of ultrasonic vibration on the turning process. International Journal of Machine Tool Design and Research. 1969;9(4):363–374. https://doi.org/10.1016/0020-7357(69)90020-1
  • 9. Wang H, Pei ZJ, Cong W. A mechanistic cutting force model based on ductile and brittle fracture material removal modes for edge sur-face grinding of CFRP composites using rotary ultrasonic machining. International Journal of Mechanical Sciences. 2020;176:105551. https://doi.org/10.1016/j.ijmecsci.2020.105551
  • 10. Wang J, Zhang J, Feng P, Guo P. Experimental and theoretical investigation of critical cutting force in rotary ultrasonic drilling of brit-tle materials and composites. International Journal of Mechanical Sciences. 2018;135:555–564. https://doi.org/10.1016/j.ijmecsci.2017.11.042
  • 11. Verma GC, Pandey PM. Machining forces in ultrasonic vibration assisted end milling. Ultrasonics. 2019;94:350–363. https://doi.org/10.1016/j.ultras.2018.07.004
  • 12. Aarsnes UJ, Di Meglio F, Shor RJ. Avoiding stick slip vibration in drilling through startup trajectory design. Journal of Process Control. 2018;70:24–35. https://doi.org/10.1016/j.jprocont.2018.07.019
  • 13. Barakat ER, Miska S, Mengjlao Y, Simonescu PA, Takch N. The effect of hydraulic vibrations on initiation of buckling and axial force transfer for helically buckled pipes at simulated horizontal wellbore conditions. Proc SPE/IADC Drill Conf Exhib, Amsterdam, The Neth-erlands, February 2007.
  • 14. Gee R, Hanley C, Hussain R, Cannel L, Martinez J. Axial oscillations tools vs. lateral vibration tools for friction reduction what’s the best way to shake the pipe. London: Society of Petroleum Engineers, March 2015.
  • 15. Long Y, Wang X, Wang P, Zhang F. A method of reducing friction and improving the penetration rate by safely vibrating the drill-string at surface. Processes. 2023; 11(4):1242. https://doi.org/10.3390/pr11041242
  • 16. Maidla E, Haci M, Jones S, Cluchy M, Alexander M, Warren T. Field proof of the new sliding technology for directionnal drilling. Proceed-ings of the SPE/IADC Drilling Conference, Amsterdam, The Nether-lands, February 2005.
  • 17. Roper NF, Dellinger TB. Reduction of frictional coefficient in borehole by use of vibration. 1983: US 4384625 1983-05-24.
  • 18. Skyles LP, Amiraslani YA, Wilhoit JE. Converting static friction to kinetic friction to drill further and faster in directional holes. Proceed-ings of the IDAC/SPE Drilling Conference and Exhibition. San Diego CA, USA, 6–8 March 2012.
  • 19. Qiu H, Yang J, Butt S. Investigation on bit stick-slip vibration with random friction coefficients. Journal of Petroleum Science and Engi-neering. 2018;164:127–139. https://doi.org/10.1016/j.petrol.2018.01.037
  • 20. Zhu X, Tang L, Yang Q. A literature review of approaches for stick-slip vibration suppression in oil well drill-string. Advances in Mechan-ical Engineering. 2014;6:967952. https://doi.org/10.1155/2014/967952
  • 21. Leus M, Gutowski P. The analysis of longitudinal contact vibration effect on friction force using Coulomb and Dahl models. Journal of Theoretical and Applied Mechanics. 2008; 46(1):171–84 [in Polish].
  • 22. Gutowski P, Leus M. The effect of longitudinal tangential vibrations on friction and driving forces in sliding motion. Tribology International. 2012; 55: 108–118. https://doi.org/10.1016/j.triboint.2012.05.023.
  • 23. Dahl PR. A solid friction model. Technical Report TOR-158(3107-18), The Aerospace Corporation, El Segundo, CA, 1968.
  • 24. Dahl PR. Solid friction damping of mechanical vibrations. AIAA Journal. 1976;14(12):1675–1682. https://doi.org/10.2514/3.61511.
  • 25. Dupont P, Armstrong B, Hayward V. Elasto-plastic friction model: contact compliance and stiction. Proceedings of the American Con-trol Conference, Chicago, Illinois 2000:1072–1077. https://doi.org/10.1109/ACC.2000.876665.
  • 26. Dupont P, Hayward V, Armstrong B, Altpeter F. Single state elasto-plastic friction models. IEEE Transactions on Automatic Control. 2002; 47(5):787-792. https://doi.org/10.1109/TAC.2002.1000274.
  • 27. Storck H, Littmann W, Wallaschek J, Mracek M. The effect of friction reduction in presence of ultrasonic vibrations and its relevance to traveling wave ultrasonic motors. Ultrasonic. 2002;40:379–383. http://dx.doi.org/10.1016/S0041-624X(02)00126-9.
  • 28. Tsai CC, Tseng CH. The effect of friction reduction in presence of in-plane vibrations. Archive of Applied Mechanics. 2006;75:164–76. https://doi.org/10.1007/s00419-005-0427-0.
  • 29. Gutowski P, Leus M. Computational model for friction force estima-tion in sliding motion at transverse tangential vibrations of elastic contact support. Tribology International. 2015;90:455–462. https://doi.org/10.1016/j.triboint.2015.04.044.
  • 30. Gutowski P, Leus M. Computational model of friction force reduction at arbitrary direction of tangential vibrations and its experimental veri-fication. Tribology International. 2020;143:106065. https://doi.org/10.1016/j.triboint.2019.106065.
  • 31. Godfrey D. Vibration reduces metal to metal contact causes an apparent reduction in friction. ASLE Transactions. 1967;10:183–192. https://doi.org/10.1080/05698196708972178.
  • 32. Hess DP, Soom A. Normal vibrations and friction under harmonic loads: part I – Hertzian contacts. Journal of Tribology. 1971;113:80–86. https://doi.org/10.1115/1.2920607.
  • 33. Tolstoi DM, Borisova GA, Grigorova SR. Friction regulation by per-pendicular oscillation. Soviet Physics – Doklad. 1973;17(9):907– 909.
  • 34. Canudas de Wit C, Olsson H, Astrom KJ, Lischynsky P. A new model for control of systems with friction. IEEE Transactions of Automatic Control. 1995;40(3):419-425. https://doi.org/10.1109/9.376053.
  • 35. Olsson H. Control systems with friction. Lund 1996.
  • 36. Bliman PA. Mathematical study of the Dahl’s friction model. Europe-an Journal of Mechanics, A/Solids. 1992;11(66):835–848.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecc6aad3-c899-4284-aa3e-3478503d0094
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.