Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-ecbfd885-4d3d-49af-8ba0-ebfd0664a1e8

Czasopismo

Przegląd Elektrotechniczny

Tytuł artykułu

Electromagnetic fields and neurodegenerative diseases

Autorzy Wyszkowska, Joanna  Jankowska, Milena  Gas, Piotr 
Treść / Zawartość http://pe.org.pl/
Warianty tytułu
PL Pola elektromagnetyczne i choroby neurodegeneracyjne
Języki publikacji EN
Abstrakty
EN The aim of this work is to present the current knowledge about the possible participation of electromagnetic fields in the occurrence and also in treatment of neurodegenerative diseases. The literature data indicate both the negative and positive effects of electromagnetic fields and not allow to draw unambiguous conclusions. Undoubtedly, the topic is still open and needs further intensive research to finally assess the mechanism of action of the electromagnetic field on neurodegenerative diseases.
PL Celem niniejszej pracy jest przedstawienie aktualnej wiedzy o możliwym udziale pól elektromagnetycznych w występowaniu oraz w leczeniu chorób neurodegeneracyjnych. Dane literaturowe wskazują zarówno na negatywny, jak i pozytywny wpływ pól elektromagnetycznych i nie pozwalają na wyciągnięcie jednoznacznych wniosków. Niewątpliwie temat jest nadal otwarty i wymaga dalszych intensywnych badań, aby ostatecznie ocenić mechanizm działania pola elektromagnetycznego na choroby neurodegeneracyjne.
Słowa kluczowe
PL pole elektromagnetyczne   układ nerwowy   choroby neurodegeneracyjne   przezczaszkowa stymulacja mózgu   TMS  
EN nervous system   neurodegenerative diseases   transcranial magnetic stimulation   TMS   electromagnetic field  
Wydawca Wydawnictwo SIGMA-NOT
Czasopismo Przegląd Elektrotechniczny
Rocznik 2019
Tom R. 95, nr 1
Strony 129--133
Opis fizyczny Bibliogr. 60 poz.
Twórcy
autor Wyszkowska, Joanna
  • Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Department of Biophysics ul. Lwowska 1, 87-100 Toruń, joanna.wyszkowska@umk.pl
autor Jankowska, Milena
  • Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Department of Biophysics ul. Lwowska 1, 87-100 Toruń, milena.jankowska@umk.pl
autor Gas, Piotr
  • AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Adama Mickiewicza 30, 30-059 Kraków, piotr.gas@agh.edu.pl
Bibliografia
[1] Gas P., Essential Facts on the History of Hyperthermia and their Connections with Electromedicine, Przeglad Elektrotechniczny, 87 (2011), No. 12b, 37-40.
[2] Ahlbom A., Neurodegenerative diseases, suicide and depressive symptoms in relation to EMF, Bioelectromagnetics, 22 (2001), No. S5, S132-S143.
[3] Mattsson M.O., Simko M., Is there a relation between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidence,” Toxicology, 301 (2012), No. 1, 1-12.
[4] Terzi M., Ozberk B., Deniz O.G., Kaplan S., The role of electromagnetic fields in neurological disorders, Journal of Chemical Neuroanatomy, 75 (2016), Part B, 77-84.
[5] Przedborski S., Vila M., Jackson-Lewis V., Series Introduction: Neurodegeneration: What is it and where are we?, The Journal of Clinical Investigation, 111 (2003), No. 1, 3–10.
[6] Bloom G.S., Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis, JAMA Neurology, 71 (2014), No. 4, 505-508.
[7] Dickson D.W., Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect?, The Journal of Clinical Investigation, 114 (2004), No. 1, 23-27.
[8] Murphy M.P., LeVine H., Alzheimer’s Disease and the β- Amyloid Peptide, Journal of Alzheimer’s Disease, 19 (2001), No. 1, 311-323.
[9] Alzheimer’s Disease Fact Sheet, National Institute on Aging. https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
[10] Coggan J.S., et al., Physiological Dynamics in Demyelinating Diseases: Unraveling Complex Relationships through Computer Modeling, International Journal of Molecular Sciences, 16 (2015), No. 9, 21215-21236.
[11] Popescu B.F.G., Pirko I., Lucchinetti C.F., Pathology of Multiple Sclerosis: Where Do We Stand?, Continuum: Lifelong Learning in Neurology, 19 (2013), No. 4, 901-921.
[12] Murray T.J., Diagnosis and treatment of multiple sclerosis, BMJ, 332 (2006), No. 7540, 525-527.
[13] Heyn S.N., Davis Ch.P., Parkinson’s Disease Early and Later Symptoms, 5 Stages, and Prognosis, Available online at: https://www.medicinenet.com/parkinsons_disease/article.htm
[14] Hirsch E.C., Does Oxidative Stress Participate in Nerve Cell Death in Parkinson’s Disease, European Neurology, 33 (1993), Suppl. 1, 52-59.
[15] Hwang O., Role of Oxidative Stress in Parkinson’s Disease, Experimental Neurobiology, 22 (2013), No. 1, 11-17.
[16] Bosco D.A., et al.,Corrigendum: Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate α-synuclein fibrilization, Nature Chemical Biology, 2 (2006), No. 5, 249-253.
[17] Nakabeppu Y. , et al . , Oxidative damage in nucleic acids and Parkinson’s disease,” Journal of Neuroscience Research, 85 (2007), No. 5, 919-934.
[18] Zeevalk G.D., et al., Glutathione and Parkinson’s disease: is this the elephant in the room?, Biomedicine & Pharmacotherapy, 62 (2008), No. 4, 236-249.
[19] Parsons Ch.G., Danysz W., Amyotrophic lateral sclerosis (ALS), Therapeutic potential of ionotropic glutamate receptor antagonists and modulators, (2002), 540-562.
[20] Amyotrophic Lateral Sclerosis (ALS) Fact Sheet, National Institute of Neurological Disorders and Stroke.” Available at: https://www.ninds.nih.gov/Disorders/Patient-Caregiver- Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALSFact- Sheet
[21] Garcia A.M., Sisternas A., Hoyos S.P., Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: a meta-analysis, International Journal of Epidemiology, 37 (2008), No. 2, 329-340.
[22] Hug K., Röösli M., Rapp R., Magnetic field exposure and neurodegenerative diseases–recent epidemiological studies, Sozial- und Präventivmedizin, vol. 51 (2006), No. 4, 210-220.
[23] Lagorio S., Polichetti A ., Is ELF-EMF exposure a risk factor for cancer and neurodegenerative diseases? [Online:] http://www.icemb.org/bologna/epidemiologia/EP2_ELF%20over view_ICEmB%202012_final_11%2018.pdf
[24] Santibanez M., Bolumar F., Garcia A.M., Occupational Risk Factors In Alzheimers Disease: A Review Assessing Quality of Published Epidemiological Studies, Occupational and Environmental Medicine, 2007. DOI:10.1136/oem.2006.028209
[25] Zhou H., et al., Association between extremely lowfrequency electromagnetic fields occupations and amyotrophic lateral sclerosis: a meta-analysis, PLoS One, 7 (2012), No. 11, Art. No. e48354. DOI: 10.1371/journal.pone.0048354
[26] Savitz D.A., Loomis D.P., Tse Ch.K.J. Electrical Occupations and Neurodegenerative Disease: Analysis of U.S. Mortality Data,” Archives of Environmental Health: An International Journal, 53 (1998), No. 1, 71-74.
[27] Feychting M., et al., Occupational magnetic field exposure and neurodegenerative disease, Epidemiology, 14 (2003), No. 4, 413-419.
[28] Andel R., et al., Work-related exposure to extremely lowfrequency magnetic fields and dementia: results from the population-based study of dementia in Swedish twins, J. Gerontol. Ser. Biomed. Sci. Med. Sci., 65 (2010), No. 11, 1220- 1227.
[29] Johansen C., Exposure to electromagnetic fields and risk of central nervous system disease in utility workers, Epidemiology, (2000) 539–543.
[30] Savitz D.A., Checkoway H., Loomis D.P., Magnetic field exposure and neurodegenerative disease mortality among electric utility workers, Epidemiol. Camb. Mass, 9 (1998), No. 4, 398-404.
[31] Wyszkowska J., et al., Evaluation of the influence of in vivo exposure to extremely low-frequency magnetic fields on the plasma levels of pro-inflammatory cytokines in rats, International Journal of Radiation Biology, (2018), 1-28. DOI: 10.1080/09553002.2018.1503428
[32] Kar ve I.P., Taylor J.M., Crack P.J., The contribution of astrocytes and microglia to traumatic brain injury,” British Journal of Pharmacology, 173 (2016), No. 4, 692-702.
[33] Rothhammer V., Quintana F.J., Role of astrocytes and microglia in central nervous system inflammation, Semin. Immunopathol., 37 (2015), No. 6, 575-576.
[34] Consales C., et al., Electromagnetic Fields, Oxidative Stress, and Neurodegeneration, International Journal of Cell Biology, (2012), Art. No. 683897, 1-16.
[35] Arendash G.W., et al., Electromagnetic Treatment to Old Alzheimer’s Mice Reverses β-Amyloid Deposition, Modifies Cerebral Blood Flow, and Provides Selected Cognitive Benefit, PLoS One, 7 (2012), No. 4, Art. No. e3575.
[36] Arendash G.W., et al., Electromagnetic Field Treatment Protects Against and Reverses Cognitive Impairment in Alzheimer’s Disease Mice, Journal of Alzheimer’s Disease, 19 (2010), No. 1, 191-210.
[37] George M.S., Stimulating the brain, Scientific American, 289 (2003), No. 3, 66-73.
[38] Greenebaum B., et al., Effects of pulsed magnetic fields on neurite outgrowth from chick embryo dorsal root ganglia, Bioelectromagnetics, 17 (1996), No. 4, 293-302.
[39] Mostert S., Kesselring J., Effect of pulsed magnetic field therapy on the level of fatigue in patients with multiple sclerosis – A randomized controlled trial, Multiple Sclerosis Journal, 11 (2005), No. 3, 302-305.
[40] Sieroń A. (Ed.), Zastosowanie pól magnetycznych w medycynie, Alfa-Medica Press, (2002).
[41] Krawczyk A., et al., Healing of orthopaedic diseases by means of electromagnetic field, Przeglad Elektrotechniczny, 86 (2010), No. 12, 72-74.
[42] Miaskowski A., Krawczyk A., Ishihara Y., Computer modelling of magnetotherapy in orthopedic treatments. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 29 (2010), No. 4, 1015-1021.
[43] Cieśla A., Kraszewski W., Skowron M., Syrek P., Analiza rozkładu pola magnetycznego generowanego przez urządzenia do fizykoterapii, Przeglad Elektrotechniczny, 91 (2015), No. 2, 162-165.
[44] Gryz K., et al., Narażenie na pole elektromagnetyczne w otoczeniu aplikatorów urządzeń magnetoterapeutycznych, Probl. Hig. Epidemiol., 96 (2015), No. 3, 578-585.
[45] Madkan A., et al., Steps to the clinic with ELF EMF, Natural Science, 1 (2009), No. 3, 157-165.
[46] Pasek J., et al., Zastosowanie pola magnetycznego oraz promieniowania optycznego w leczeniu zespołów bólowych kręgosłupa, w szczególności rwy kulszowej, Aktualności Neurologiczne, 12 (2012), No. 1, 65-68.
[47] Pilla A.A., Nonthermal electromagnetic fields: from first messenger to therapeutic applications, Electromagnetic Biology and Medicine, 32 (2013), No. 2, 123-136.
[48] Sieroń A., Cieślar G., Application of variable magnetic fields in medicine-15 years experience, Wiadomosci Lekarskie 56 (2003), No. 9–10, pp. 434–441 [in Polish].
[49] Sandyk R., Treatment with electromagnetic fields reverses the long-term clinical course of a patient with chronic progressive multiple sclerosis, International Journal of Neuroscience, 90 (1997), No. 3-4, 177-185.
[50] Bersani F.S., et al., Deep transcranial magnetic stimulation as a treatment for psychiatric disorders: A comprehensive review, European Psychiatry, 28 (2013), No. 1, 30-39.
[51] Cummings J.L., Progress in Neurotherapeutics and Neuropsychopharmacology 2007, Progress in Neurotherapeutics and Neuropsychopharmacology, 2 (2007), No. 1, 1-12.
[52] Zyss T., Magnetotherapy, Neuro Endocrinology Letters, 29 (2008), Suppl 1, 161-201.
[53] Klein M.M., et al., Transcranial magnetic stimulation of the brain: guidelines for pain treatment research, Pain, 156 (2015), No. 9, 1601–1614.
[54] Philpott A.L., et al., Transcranial magnetic stimulation as a tool for understanding neurophysiology in Huntington’s disease: A review, Neuroscience & Biobehavioral Reviews, 37 (2013), No. 8, 1420-1433.
[55] Arendash G.W., Review of the Evidence that Transcranial Electromagnetic Treatment will be a Safe and Effective Therapeutic Against Alzheimer’s Disease, Journal of Alzheimer’s Disease, 53 (2016), No. 3, 753-771.
[56] Arendash G.W., Transcranial electromagnetic treatment against Alzheimer’s disease: why it has the potential to trump Alzheimer’s disease drug development, Journal of Alzheimer’s Disease, 32 (2012), No. 2, 243-266.
[57] Liao X., et al., Repetitive transcranial magnetic stimulation as an alternative therapy for cognitive impairment in Alzheimer’s disease: a meta-analysis, Journal of Alzheimer’s Disease, 48 (2015), No. 2, 463-472.
[58] Starzynski J., et al., Simulation of magnetic stimulation of the brain, IEEE Transactions on Magnetics, 38 (2002), No. 2, 1237-1240.
[59] Miaskowki A., Krawczyk A., Łada-Tondyra E., Electromagnetic field in transcranial magnetic stimulation, Przeglad Elektrotechniczny, 90 (2014), No. 12, pp. 244-246.
[60] Syrek P., Barbulescu R., Parametric curves to trace the TMS coils windings, 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), (2017), Art. No. 7905069, 386-391. DOI: 10.1109/ATEE.2017.7905069
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-ecbfd885-4d3d-49af-8ba0-ebfd0664a1e8
Identyfikatory
DOI 10.15199/48.2019.01.33