
http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-ecbfd885-4d3d-49af-8ba0-ebfd0664a1e8

Czasopismo |
Przegląd Elektrotechniczny |
|||||||||||||
Tytuł artykułu |
Electromagnetic fields and neurodegenerative diseases |
|||||||||||||
Autorzy | Wyszkowska, Joanna Jankowska, Milena Gas, Piotr | |||||||||||||
Treść / Zawartość | http://pe.org.pl/ | |||||||||||||
Warianty tytułu |
|
|||||||||||||
Języki publikacji | EN | |||||||||||||
Abstrakty |
|
|||||||||||||
Słowa kluczowe | ||||||||||||||
Wydawca |
Wydawnictwo SIGMA-NOT |
|||||||||||||
Czasopismo | Przegląd Elektrotechniczny | |||||||||||||
Rocznik | 2019 | |||||||||||||
Tom | R. 95, nr 1 | |||||||||||||
Strony | 129--133 | |||||||||||||
Opis fizyczny | Bibliogr. 60 poz. | |||||||||||||
Twórcy |
|
|||||||||||||
Bibliografia |
[1] Gas P., Essential Facts on the History of Hyperthermia and their Connections with Electromedicine, Przeglad Elektrotechniczny, 87 (2011), No. 12b, 37-40.
[2] Ahlbom A., Neurodegenerative diseases, suicide and depressive symptoms in relation to EMF, Bioelectromagnetics, 22 (2001), No. S5, S132-S143. [3] Mattsson M.O., Simko M., Is there a relation between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidence,” Toxicology, 301 (2012), No. 1, 1-12. [4] Terzi M., Ozberk B., Deniz O.G., Kaplan S., The role of electromagnetic fields in neurological disorders, Journal of Chemical Neuroanatomy, 75 (2016), Part B, 77-84. [5] Przedborski S., Vila M., Jackson-Lewis V., Series Introduction: Neurodegeneration: What is it and where are we?, The Journal of Clinical Investigation, 111 (2003), No. 1, 3–10. [6] Bloom G.S., Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis, JAMA Neurology, 71 (2014), No. 4, 505-508. [7] Dickson D.W., Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect?, The Journal of Clinical Investigation, 114 (2004), No. 1, 23-27. [8] Murphy M.P., LeVine H., Alzheimer’s Disease and the β- Amyloid Peptide, Journal of Alzheimer’s Disease, 19 (2001), No. 1, 311-323. [9] Alzheimer’s Disease Fact Sheet, National Institute on Aging. https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet [10] Coggan J.S., et al., Physiological Dynamics in Demyelinating Diseases: Unraveling Complex Relationships through Computer Modeling, International Journal of Molecular Sciences, 16 (2015), No. 9, 21215-21236. [11] Popescu B.F.G., Pirko I., Lucchinetti C.F., Pathology of Multiple Sclerosis: Where Do We Stand?, Continuum: Lifelong Learning in Neurology, 19 (2013), No. 4, 901-921. [12] Murray T.J., Diagnosis and treatment of multiple sclerosis, BMJ, 332 (2006), No. 7540, 525-527. [13] Heyn S.N., Davis Ch.P., Parkinson’s Disease Early and Later Symptoms, 5 Stages, and Prognosis, Available online at: https://www.medicinenet.com/parkinsons_disease/article.htm [14] Hirsch E.C., Does Oxidative Stress Participate in Nerve Cell Death in Parkinson’s Disease, European Neurology, 33 (1993), Suppl. 1, 52-59. [15] Hwang O., Role of Oxidative Stress in Parkinson’s Disease, Experimental Neurobiology, 22 (2013), No. 1, 11-17. [16] Bosco D.A., et al.,Corrigendum: Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate α-synuclein fibrilization, Nature Chemical Biology, 2 (2006), No. 5, 249-253. [17] Nakabeppu Y. , et al . , Oxidative damage in nucleic acids and Parkinson’s disease,” Journal of Neuroscience Research, 85 (2007), No. 5, 919-934. [18] Zeevalk G.D., et al., Glutathione and Parkinson’s disease: is this the elephant in the room?, Biomedicine & Pharmacotherapy, 62 (2008), No. 4, 236-249. [19] Parsons Ch.G., Danysz W., Amyotrophic lateral sclerosis (ALS), Therapeutic potential of ionotropic glutamate receptor antagonists and modulators, (2002), 540-562. [20] Amyotrophic Lateral Sclerosis (ALS) Fact Sheet, National Institute of Neurological Disorders and Stroke.” Available at: https://www.ninds.nih.gov/Disorders/Patient-Caregiver- Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALSFact- Sheet [21] Garcia A.M., Sisternas A., Hoyos S.P., Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: a meta-analysis, International Journal of Epidemiology, 37 (2008), No. 2, 329-340. [22] Hug K., Röösli M., Rapp R., Magnetic field exposure and neurodegenerative diseases–recent epidemiological studies, Sozial- und Präventivmedizin, vol. 51 (2006), No. 4, 210-220. [23] Lagorio S., Polichetti A ., Is ELF-EMF exposure a risk factor for cancer and neurodegenerative diseases? [Online:] http://www.icemb.org/bologna/epidemiologia/EP2_ELF%20over view_ICEmB%202012_final_11%2018.pdf [24] Santibanez M., Bolumar F., Garcia A.M., Occupational Risk Factors In Alzheimers Disease: A Review Assessing Quality of Published Epidemiological Studies, Occupational and Environmental Medicine, 2007. DOI:10.1136/oem.2006.028209 [25] Zhou H., et al., Association between extremely lowfrequency electromagnetic fields occupations and amyotrophic lateral sclerosis: a meta-analysis, PLoS One, 7 (2012), No. 11, Art. No. e48354. DOI: 10.1371/journal.pone.0048354 [26] Savitz D.A., Loomis D.P., Tse Ch.K.J. Electrical Occupations and Neurodegenerative Disease: Analysis of U.S. Mortality Data,” Archives of Environmental Health: An International Journal, 53 (1998), No. 1, 71-74. [27] Feychting M., et al., Occupational magnetic field exposure and neurodegenerative disease, Epidemiology, 14 (2003), No. 4, 413-419. [28] Andel R., et al., Work-related exposure to extremely lowfrequency magnetic fields and dementia: results from the population-based study of dementia in Swedish twins, J. Gerontol. Ser. Biomed. Sci. Med. Sci., 65 (2010), No. 11, 1220- 1227. [29] Johansen C., Exposure to electromagnetic fields and risk of central nervous system disease in utility workers, Epidemiology, (2000) 539–543. [30] Savitz D.A., Checkoway H., Loomis D.P., Magnetic field exposure and neurodegenerative disease mortality among electric utility workers, Epidemiol. Camb. Mass, 9 (1998), No. 4, 398-404. [31] Wyszkowska J., et al., Evaluation of the influence of in vivo exposure to extremely low-frequency magnetic fields on the plasma levels of pro-inflammatory cytokines in rats, International Journal of Radiation Biology, (2018), 1-28. DOI: 10.1080/09553002.2018.1503428 [32] Kar ve I.P., Taylor J.M., Crack P.J., The contribution of astrocytes and microglia to traumatic brain injury,” British Journal of Pharmacology, 173 (2016), No. 4, 692-702. [33] Rothhammer V., Quintana F.J., Role of astrocytes and microglia in central nervous system inflammation, Semin. Immunopathol., 37 (2015), No. 6, 575-576. [34] Consales C., et al., Electromagnetic Fields, Oxidative Stress, and Neurodegeneration, International Journal of Cell Biology, (2012), Art. No. 683897, 1-16. [35] Arendash G.W., et al., Electromagnetic Treatment to Old Alzheimer’s Mice Reverses β-Amyloid Deposition, Modifies Cerebral Blood Flow, and Provides Selected Cognitive Benefit, PLoS One, 7 (2012), No. 4, Art. No. e3575. [36] Arendash G.W., et al., Electromagnetic Field Treatment Protects Against and Reverses Cognitive Impairment in Alzheimer’s Disease Mice, Journal of Alzheimer’s Disease, 19 (2010), No. 1, 191-210. [37] George M.S., Stimulating the brain, Scientific American, 289 (2003), No. 3, 66-73. [38] Greenebaum B., et al., Effects of pulsed magnetic fields on neurite outgrowth from chick embryo dorsal root ganglia, Bioelectromagnetics, 17 (1996), No. 4, 293-302. [39] Mostert S., Kesselring J., Effect of pulsed magnetic field therapy on the level of fatigue in patients with multiple sclerosis – A randomized controlled trial, Multiple Sclerosis Journal, 11 (2005), No. 3, 302-305. [40] Sieroń A. (Ed.), Zastosowanie pól magnetycznych w medycynie, Alfa-Medica Press, (2002). [41] Krawczyk A., et al., Healing of orthopaedic diseases by means of electromagnetic field, Przeglad Elektrotechniczny, 86 (2010), No. 12, 72-74. [42] Miaskowski A., Krawczyk A., Ishihara Y., Computer modelling of magnetotherapy in orthopedic treatments. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 29 (2010), No. 4, 1015-1021. [43] Cieśla A., Kraszewski W., Skowron M., Syrek P., Analiza rozkładu pola magnetycznego generowanego przez urządzenia do fizykoterapii, Przeglad Elektrotechniczny, 91 (2015), No. 2, 162-165. [44] Gryz K., et al., Narażenie na pole elektromagnetyczne w otoczeniu aplikatorów urządzeń magnetoterapeutycznych, Probl. Hig. Epidemiol., 96 (2015), No. 3, 578-585. [45] Madkan A., et al., Steps to the clinic with ELF EMF, Natural Science, 1 (2009), No. 3, 157-165. [46] Pasek J., et al., Zastosowanie pola magnetycznego oraz promieniowania optycznego w leczeniu zespołów bólowych kręgosłupa, w szczególności rwy kulszowej, Aktualności Neurologiczne, 12 (2012), No. 1, 65-68. [47] Pilla A.A., Nonthermal electromagnetic fields: from first messenger to therapeutic applications, Electromagnetic Biology and Medicine, 32 (2013), No. 2, 123-136. [48] Sieroń A., Cieślar G., Application of variable magnetic fields in medicine-15 years experience, Wiadomosci Lekarskie 56 (2003), No. 9–10, pp. 434–441 [in Polish]. [49] Sandyk R., Treatment with electromagnetic fields reverses the long-term clinical course of a patient with chronic progressive multiple sclerosis, International Journal of Neuroscience, 90 (1997), No. 3-4, 177-185. [50] Bersani F.S., et al., Deep transcranial magnetic stimulation as a treatment for psychiatric disorders: A comprehensive review, European Psychiatry, 28 (2013), No. 1, 30-39. [51] Cummings J.L., Progress in Neurotherapeutics and Neuropsychopharmacology 2007, Progress in Neurotherapeutics and Neuropsychopharmacology, 2 (2007), No. 1, 1-12. [52] Zyss T., Magnetotherapy, Neuro Endocrinology Letters, 29 (2008), Suppl 1, 161-201. [53] Klein M.M., et al., Transcranial magnetic stimulation of the brain: guidelines for pain treatment research, Pain, 156 (2015), No. 9, 1601–1614. [54] Philpott A.L., et al., Transcranial magnetic stimulation as a tool for understanding neurophysiology in Huntington’s disease: A review, Neuroscience & Biobehavioral Reviews, 37 (2013), No. 8, 1420-1433. [55] Arendash G.W., Review of the Evidence that Transcranial Electromagnetic Treatment will be a Safe and Effective Therapeutic Against Alzheimer’s Disease, Journal of Alzheimer’s Disease, 53 (2016), No. 3, 753-771. [56] Arendash G.W., Transcranial electromagnetic treatment against Alzheimer’s disease: why it has the potential to trump Alzheimer’s disease drug development, Journal of Alzheimer’s Disease, 32 (2012), No. 2, 243-266. [57] Liao X., et al., Repetitive transcranial magnetic stimulation as an alternative therapy for cognitive impairment in Alzheimer’s disease: a meta-analysis, Journal of Alzheimer’s Disease, 48 (2015), No. 2, 463-472. [58] Starzynski J., et al., Simulation of magnetic stimulation of the brain, IEEE Transactions on Magnetics, 38 (2002), No. 2, 1237-1240. [59] Miaskowki A., Krawczyk A., Łada-Tondyra E., Electromagnetic field in transcranial magnetic stimulation, Przeglad Elektrotechniczny, 90 (2014), No. 12, pp. 244-246. [60] Syrek P., Barbulescu R., Parametric curves to trace the TMS coils windings, 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), (2017), Art. No. 7905069, 386-391. DOI: 10.1109/ATEE.2017.7905069 |
|||||||||||||
Uwagi |
|
|||||||||||||
Kolekcja | BazTech | |||||||||||||
Identyfikator YADDA | bwmeta1.element.baztech-ecbfd885-4d3d-49af-8ba0-ebfd0664a1e8 | |||||||||||||
Identyfikatory |
|