PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-periodic thermal boundary effects on porous media saturated with nanofluids : CGLE model for oscillatory mode

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stability of nonlinear nanofluid convection is examined using the complex matrix differential operator theory. With the help of finite amplitude analysis, nonlinear convection in a porous medium is investigated that has been saturated with nanofluid and subjected to thermal modulation. The complex Ginzburg-Landau equation (CGLE) is used to determine the finite amplitude convection in order to evaluate heat and mass transfer. The small amplitude of convection is considered to determine heat and mass transfer through the porous medium. Thermal modulation of the system is predicted to change sinusoidally over time, as shown at the boundary. Three distinct modulations IPM, OPM, and LBMOhave been investigated and found that OPM and LBMO cases are used to regulate heat and mass transfer. Further, it is found that modulation frequency (ωf varying from 2 to 70) reduces heat and mass transfer while modulation amplitude (δ1varying from 0.1 to 0.5 ) enhances both.
Rocznik
Strony
98--116
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mathematics, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana-500075, India
  • Department of Mathematics, Vignan’s Foundation for Science, Technology and Research, Vadlamudi 522 213, Guntur, India
Bibliografia
  • 1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. in: D.A.Singer, H.P.Wang(Eds.) Development and applications of Non-Newtonian Flows, ASME Fluids Engineering Division. 66 (1995) 99-105.
  • 2. H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles, Netsu Bussei. 7 (1993) 227−233.
  • 3. H.S. Chen, Y. Ding, A. Lapkin, Rheological behaviour of nanofluids containing tube/rod-like nanoparticles, Power Technology. 194 (2009) 132–141.
  • 4. J.A. Eastman, SUS. Choi, W. Yu, L.J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Applied Physics Letters 78 (2001) 718-720.
  • 5. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids. ASME Journal of Heat Transfer. 125 (2003) 567–574.
  • 6. J. Buongiorno, W. Hu, Nanofluid coolant for advanced nuclear power plants, In: Proceedings of ICAPP’05, Seoul. 5705 (2009) 15−19.
  • 7. I.S. Oyelakin, P. Lalramneihmawii, S. Mondal, S.K. Nandy, P. Sibanda, Thermophysicalanalysis of three-dimensional magnetohydrodynamic flow of a tangent hyperbolic nanofluid, Engineering Reports. 2 (2020) 12144.
  • 8. J.A. Eastman, SUS. Choi, W. Yu, Thompson LJ. Thermal Transport in Nanofluids, Annual Rev. Mater. Research. 34 (2004) 219-246.
  • 9. U. Rea, T. McKrell, L. Hu, J. Buongiorno, Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids, International Journal of Heat and Mass Transfer. 52 (2009) 2042–2048.
  • 10. J. Buongiorno, Convective transport in nanofluids, ASME Journal of Heat Transfer. 128 (2006) 240−250.
  • 11. DY. Tzou, Thermal instability of nanofluids in natural convection, International Journal of Heat and Mass Transfer. 51 (2008) 2967−2979.
  • 12. D.Y. Tzou, Instability of nanofluids in natural convection, ASME Journal of Heat Transfer. 130 (2008) 072401.
  • 13. D.A. Nield, A.V. Kuznetsov, Thermal instability in a porous medium layer saturated by nonofluid, International Journal of Heat and Mass Transfer. 52 (2009) 5796–5801.
  • 14. A.V. Kuznetsov, D.A. Nield, Effect of local Thermal non-equilibrium on the Onset of convection in porous medium layer saturated by a Nanofluid, Transport in Porous Media. 83 (2010) 425–436.
  • 15. A.V. Kuznetsov, D.A. Nield, Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman Model, Transport in Porous Media. 81 (2010) 409–422.
  • 16. B.S. Bhadauria, S.Agarwal, Natural Convection in a Nanofluid Saturated Rotating Porous Layer A Nonlinear Study, Transport in Porous Media. 87 (2011) 585-602.
  • 17. S. Agarwal, B.S. Bhadauria, P.G. Siddheshwar, Thermal instability of a nanofluid saturating a rotating anisotropic porous medium, Special Topics Reviews in Porous Media: An Int J. 2 (2011) 53-64.
  • 18. S. Agarwal, Natural convection in a nanofluid-saturated rotating porous layer: A more realistic approach, Transport in Porous Media. 104 (2011) 581-592.
  • 19. S. Rana, S. Agarwal, Convection in a binary nanofluid saturated rotating porous layer, Journal of Nanofluids. 4 (2015) 59-65.
  • 20. S. Agarwal, S. Rana, Nonlinear convective analysis of a rotating Oldroyd-B nanofluid layer under thermal non-equilibrium utilizing Al 2 O 3-EG colloidal suspension. The European Physical Journal. 131 (2016) 01−14.
  • 21. J.C. Umavathi, M.A. Sheremet, Chemical reaction influence on nanofluid flow in a porous layer: Stability analysis, International Communications in Heat and Mass Transfer 138, (2022) 106353.
  • 22. P. Kiran, Gravitational modulation effect on double-diffusive oscillatory convection in a viscoelastic fluid layer, Jourmal of Nanofluids. 11 (2022) 263-275.
  • 23. S.H. Manjula, P. Kiran, Thermo-rheological effect on weak nonlinear Rayleigh-Benard convection under rotation speed modulation, Book: Boundary Layer Flows. (2022) 01-20.
  • 24. W. Ibrahim, M. Negera, Melting and viscous dissipation effect on upper-convectedMaxwell and Williamson nanofluid, Engineering Reports. 2 (2020) 12159.
  • 25. A.O. Ajibade, P.O. Ojeagbase, Steady natural convection heat and mass transfer flowthrough a vertical porous channel with variable viscosity and thermal conductivity, Engineering Reports. 2 (2020) 12268.
  • 26. X. L𝑢̈ et al. Stability and optimal control strategies for a novel epidemic model of COVID-19, Nonlinear Dynamics, 106 (2021) 1491–1507.
  • 27. M.Z. Yin, Q.W. Zhu, X. L𝑢̈, Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model, Nonlinear Dynamics. 106 (2021) 1347–1358.
  • 28. Y.H. Yin et al. B𝑎̈cklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dynamics. 108 (2022) 4181–4194.
  • 29. Y.W. Zhao, J.W. Xia & X. L𝑢̈, The variable separation solution, fractal and chaos in an extended coupled (2+1)-dimensional Burgers system. Nonlinear Dynamics. 108 (2022) 4195–4205.
  • 30. B. Liu, et al. Rogue waves based on the coupled nonlinear Schr𝑜̈dinger option pricing model with external potential, Modern Physics Letters B. 36(15) (2022) 2250057.
  • 31. G. Venezian, Effect of modulation on the onset of thermal convection, Journal of Fluid Mechanics. 35 (1969) 243-254.
  • 32. P.M. Gresho, R.L. Sani, The Effects of Gravity Modulation on the Stability of a Heated Fluid Layer, Journal of Fluid Mechanics 40 (1970) 783−806.
  • 33. M.S. Malashetty, D. Basavaraj, Effect of thermal/gravity modulation on the onset of convection of Raleygh−Bénard convection in a couple stress fluid, International Journal of Transport Phenomenon. 7 (2005) 31−44.
  • 34. Y. Shu, B.Q. Li, B.R. Ramaprian, Convection in modulated thermal gradients and gravity: experimental messurements and numerical simulations, International Journal of Mass and Heat Transfer. 48 (2005) 145−160.
  • 35. J.L. Rogers, W. Pesch, O. Brausch, M.F. Schatz, Complex ordered patterns in shaken convection, Physical Review E. 71 (2005) 066214.
  • 36. T. Boulal, S. Aniss, M. Belhaq, Effect quasiperiodic gravitational modulation on the stability of a heated fluid layer, Physycal Review E. 76 (2007) 056320.
  • 37. J.C. Umavathi, Effect of Thermal Modulation on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid, Transport in Porous Media. 98 (2013) 59-79.
  • 38. B.S. Bhadauria, P. Kiran, Nonlinear thermal Darcy convection in a nanofluid saturated porous medium under gravity modulation, Advanced Science Letters. 20 (2014) 903-910.
  • 39. B.S. Bhadauria, P. Kiran, M. Belhaq, Nonlinear thermal convection in a layer of nanofluid under g-jitter and internal heating effects, MATEC Web of Conferences. 16 (2014) 09003.
  • 40. P. Kiran, B.S. Bhadauria, V. Kumar, Thermal Convection in a Nanofluid Saturated Porous Medium with Internal Heating and Gravity Modulation, Journal of Nanofluids. 5(3) (2016) 321-327.
  • 41. P. Kiran, Nonlinear thermal convection in a viscoelastic nanofluid saturated porous medium under gravity modulation, Ain Shams Engineering Journal. 7(2) (2016) 639-651.
  • 42. P. Kiran, Y. Narasimhulu, Centrifugally driven convection in a nanofluid saturated rotating porous medium with modulation, Journal of Nanofluids. 6 (2017) 01-11.
  • 43. P. Kiran, Y. Narasimhulu, Internal heating and thermal modulation effects on chaotic convection in a porous medium, Journal of Nanofluids. 7 (2018) 544-555.
  • 44. P. Kiran, S.H. Manjula, Internal heat modulation on Darcy convection in a porous media saturated by nanofluid, Journal of Nanofluids. (2022) In press.
  • 45. B.S. Bhadauria, P. Kiran, Weakly nonlinear oscillatory convection in a viscoelastic fluid saturating porous medium under temperature modulation, International Journal of Heat and Mass Transfer. 77 (2014) 843−851.
  • 46. B.S. Bhadauria, P. Kiran, Heat and mass transfer for oscillatory convection in a binary viscoelastic fluid layer subjected to temperature modulation at the boundaries, International Communications in Heat Mass Transfer. 58 (2014) 166–175.
  • 47. P. Kiran, B.S. Bhadauria, R. Roslan, The effect of throughflow on weakly nonlinear convection in a viscoelastic saturated porous medium, Journal of Nanofluids. 9 (2020) 36-46.
  • 48. B.S. Bhadauria, S. Agarwal, A. Kumar, Nonlinear Two-Dimensional Convection in a Nanofluid Saturated Porous Medium, Transport in Porous Media. 90 (2011) 605–625.
  • 49. B.S. Bhadauria, P. Kiran, Weak nonlinear oscillatory convection in a viscoelastic fluid layer under gravity modulation, International Journal of Non-linear Mechanics. 65 (2014) 133−140.
  • 50. B.S. Bhadauria, P. Kiran, Weak nonlinear oscillatory convection in a viscoelastic fluid saturated porous medium under gravity modulation, Transport in Porous Media. 104 (2014) 451-467.
  • 51. B.S. Bhadauria, P. Kiran, Chaotic and oscillatory magneto-convection in a binary viscoelastic fluid under G-jitter, International Journal of Heat and Mass Transfer. 84 (2014) 610-624.
  • 52. S.H Davis, The stability of time periodic flows, Annual Review of Fluid Mechanics. 8 (1976) 57–74.
  • 53. S. Agarwal, B.S. Bhadauria, Convective heat transport by longitudinal rolls in dilute Nanoliquids, Journal of Nanofluids. 3 (2014) 380-390.
  • 54. B. Rajib, G.C. Layek, The onset of thermo convection in a horizontal viscoelastic fluid layer heated underneath, Thermal Energy and Power Engineering. 1 (2012) 01−9.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecb92aad-b353-487b-bd90-723472dbc36f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.