PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Criteria for selection of working fluid in low-temperature ORC

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The economics of an ORC system is strictly linked to thermodynamic properties of the working fluid. A bad choice of working fluid could lead to a less efficient and expensive plant/generation unit. Some selection criteria have been put forward by various authors, incorporating thermodynamic properties, provided in literature but these do not have a general character. In the paper a simple analysis has been carried out which resulted in development of thermodynamic criteria for selection of an appropriate working fluid for subcritical and supercritical cycles. The postulated criteria are expressed in terms of non-dimensional numbers, which are characteristic for different fluids. The efficiency of the cycle is in a close relation to these numbers. The criteria are suitable for initial fluid selection. Such criteria should be used with other ones related to environmental impact, economy, system size, etc. Examples of such criteria have been also presented which may be helpful in rating of heat exchangers, which takes into account both heat transfer and flow resistance of the working fluid.
Rocznik
Strony
429--440
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
  • The Szewalski Institute of Fluid-Flow Machinery PAS, Fiszera 14, 80-231 Gdansk
Bibliografia
  • 1. Aghahosseini S., Dincer I., 2013. Comparative performance analysis of low temperature organic Rankine cycle (ORC) using pure and zeotropic working fluids. Appl. Therm. Eng., 54, 35–42. DOI: 10.1016/j.applthermaleng.2013.01.028.
  • 2. Aljundi I.H., 2011. Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle. Renew. Energy, 36, 1196–1202. DOI: 10.1016/j.renene.2010.09.022.
  • 3. Andersen W.C., Bruno T.J, 2005. Rapid screening of fluids for chemical stability in Organic Rankine Cycle applications. Ind. Eng. Chem. Res., 44, 5560–5566. DOI: 10.1021/ie050351s.
  • 4. Bao J., Zhao L., 2014. A review of working fluid and expander selections for organic Rankine cycle. Renewable Sustainable Energy Rev., 24, 325–342. DOI: 10.1016/j.rser.2013.03.040.
  • 5. Bertrand T.F., Papadakis G., Lambrinos G., Frangoudakis A., 2008. Criteria for working fluids selection in low-temperature solar organic Rankine cycles. Proceedings Eurosun 2008, Lisbon, Portugal.
  • 6. Braimakis K., Leontarits A-D., Preisinger M., Karellas S., Bruggeman D., Panopoulos K., Thermodynamic investigation of waste heat recovery with subcritical and supercritical low-temperature ORC based on natural refrigerants and their binary mixtures. Proceedings of ECOS 2014, the 27th Int. Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Turku, Finland.
  • 7. Cho S.Y., Cho C.H., Ahn K.Y., Lee Y.D., 2014. A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for fluctuations of the available thermal energy. Energy, 64, 900–911. DOI: 10.1016/j.energy.2013.11.013.
  • 8. Drescher U., Bruggemann D., 2007. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Appl. Therm. Eng., 27, 223-228. DOI: 10.1016/j.applthermaleng.2006.04.024.
  • 9. Garg P., Kumar P., Srinivasan K., Dutta P., 2013. Evaluation of isopentane, R-245fa and their mixtures as working fluids for organic Rankine cycles. Appl. Therm. Eng., 51, 292–300. DOI: 10.1016/j.applthermaleng.2012.08.056.
  • 10. Hung T.C., 2001. Waste heat recovery of organic Rankine cycle using dry fluids. Energy Convers. Manage., 42, 539–553. DOI: 10.1016/S0196-8904(00)00081-9.
  • 11. Liu B.T., Chien K.H., Wang C.C., 2004. Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy, 29, 1207–1217. DOI: 10.1016/j.energy.2004.01.004.
  • 12. Mago P.J., Chamra L.M., Srinivasan K., Somayaji C., 2008. An examination of regenerative organic Rankine cycles using dry fluids. Appl. Therm. Eng., 28, 998–1007. DOI: 10.1016/j.applthermaleng.2007.06.025.
  • 13. Maizza V., Maizza A., 2001. Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems. Appl. Therm. Eng., 21, 381-390. DOI: 10.1016/S1359-4311(00)00044-2.
  • 14. Mikielewicz D,, Mikielewicz J., 2008. Cogenerative micro power plants – A new direction for development of power engineering? Archives of Thermodynamics, 29, 109-132.
  • 15. Mikielewicz J, Mikielewicz D, 2009. Comparative study of selected fluids for use in supercritical Organic Rankine Cycles. Archives of Thermodynamics, 30, 3-15.
  • 16. Nowak W., Borsukiewicz-Gozdur A., Stachel A.A., 2008. Using the low-temperature Clausius–Rankine cycle to cool technical equipment. Appl. Energy, 85, 582–588. DOI: 10.1016/j.apenergy.2007.09.001.
  • 17. Rayegan R., Tao Y.X., 2011. A procedure to select working fluid s for Solar Organic Rankine Cycles (ORCs). Renew. Energy, 36, 659–670. DOI: 10.1016/j.renene.2010.07.010.
  • 18. Saleh B., Koglbauer G., Wendland M., Fisher J., 2007. Working fluids for low-temperature organic Rankine cycles. Energy, 32, 1210-1221. DOI: 10.1016/j.energy.2006.07.001.
  • 19. Refprop 9.0, NIST software, 2010.
  • 20. Tchanche B.F., Papadakis G., Lambrinos G., Frangoudakis A., 2009. Fluid selection for a low-temperature solar organic Rankine cycle. Appl. Therm. Eng., 29, 2468-2476. DOI: 10.1016/j.applthermaleng.2008.12.025.
  • 21. Wei D., Lu X., Lu Z., Gu J., 2007. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Convers. Manage., 48, 1113–1119. DOI: 10.1016/j.enconman.2006.10.020
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecb8a872-b758-49a1-b090-c4550efa3eb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.