PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of heating on structure and leaching characteristics of a zinc carbonate ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the structural changes occurred in a zinc carbonate (smithsonite) ore sample following heating at temperatures between 523 K and 1173 K were investigated in detail using X-ray diffraction (XRD), thermal (TG/DTA) and Fourier-transform infrared (FT-IR) spectroscopy analyses. Afterwards, the leaching characteristics of zinc from the ore sample and the heated ore samples in sodium hydroxide solutions were determined. While heating at 523 K did not cause any structural change in the ore sample, heating at 723 K completely converted smithsonite (ZnCO3) in the ore sample to zinc oxide (ZnO), which resulted lower zinc leaching efficiencies of 40.6% and 62.0% for 3 and 4 mol/dm3 NaOH concentrations, respectively, in comparison to zinc leaching efficiencies (67.2% and 70.7%) obtained for the unheated ore sample. On the other hand, due to neoformation of dissolution resistant ZnFe2O4, Ca2ZnSi2O7 and Zn2SiO4 phases during heating and formation of CaZn2(OH)6∙2H2O phase during leaching, the leaching efficiency of zinc further decreased to 22.2% and 31.3%, respectively, in 3 and 4 mol/dm3 NaOH solutions for the ore sample heated at 1173 K. The formation of zinc-containing dissolution resistant phases by high-temperature heating was observed to be the only reason for the reduction in the zinc leaching efficiency (49.4% at 1173 K) at the highest NaOH concentration (8 mol/dm3) studied. In this work, the comparative precipitation studies were also conducted and crystalline zinc oxides with different morphologies could be precipitated at considerably high efficiencies from the selected pregnant solutions obtained following leaching.
Rocznik
Strony
23--32
Opis fizyczny
Bibliogr. 52 poz., rys., wykr.
Twórcy
autor
  • Gümüşhane University, Mining Engineering Department, 29100, Gümüşhane, Turkey
  • Hacettepe University, Mining Engineering Department, 06800 Beytepe, Ankara, Turkey
  • Hacettepe University, Mining Engineering Department, 06800 Beytepe, Ankara, Turkey
Bibliografia
  • ABKHOSHK, E., JORJANI, E., AL-HARAHSHEH, M.S., RASHCHI, F., NAAZERI, M., 2014. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy 149, 153-167.
  • AFIFI, S., EBAID, A., HEGAZY, M., DONYA, K., 1991. On the electrowinning of zinc from alkaline zincate solutions. J. Electrochem. Soc. 138, 1929-1933.
  • AROUETE, S., BLURTON, K.F., OSWIN H.G., 1969. Controlled current deposition of zinc from alkaline solution J. Electrochem. Soc. 116, 166-169.
  • BAROCH, C.T., HILLIARD, R.V., LANG, R.S., 1953. The caustic electrolytic-zinc process. J. Electrochem. Soc. 100, 165-172.
  • BECK, C.W., 1950. Differential thermal analysis curves of carbonate minerals. Am. Mineral. 35, 985-1013.
  • EDALATI, K., SHAKIBA, A., VAHDATI-KHAKI, J., ZEBARJAD, S.M., 2016. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers. Mater. Res. Bull. 74, 374-379.
  • EHSANI, I., OBUT, A., 2019. Conversion behaviours of Sr- and Ca- containing solids in dissolved carbonate containing alkaline pregnant zinc leaching solutions. Miner. Eng. 135, 9-12.
  • EHSANI, I., UCYILDIZ, A., OBUT, A., 2019. Leaching behaviour of zinc from a smithsonite ore in sodium hydroxide solutions. Physicochem. Probl. Mi. 55, 407-416.
  • FRENAY, J., 1985. Leaching of oxidized zinc ores in various media. Hydrometallurgy 15, 243-253.
  • GHASEMI, S.M.S., AZIZI, A., 2018. Alkaline leaching of lead and zinc by sodium hydroxide: kinetics modeling. J. Mater. Res. Technol. 7, 118-125.
  • GONI-ELIZALDE, S., GARCIA-CLAVEL, M.E., 1988. Thermal behavior in air of iron oxyhydroxides obtained from the method of homogeneous precipitation. Part I. Goethite samples of varying crystallinity. Thermochim. Acta 124, 359-369.
  • GUDKOV, S.V., BURMISTROV, D.E., SEROV, D.A., REBEZOV, M.B., SEMENOVA, A.A., LISITSYN, A.B., 2021. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 9, 641481.
  • HUANG, C.K., KERR, P.F., 1960. Infrared study of the carbonate minerals. Am. Mineral. 45, 311-324.
  • KAMBLE, A.S., SINHA, B.B., CHUNG, K., GIL, M.G., BURUNGALE, V., PARK, C.J., KIM, J.H., PATIL, P.S., 2014. Effect of hydroxide anion generating agents on growth and properties of ZnO nanorod arrays. Electrochim. Acta 149, 386-393.
  • KAWANO, T., IMAI, H., 2006. Fabrication of ZnO nanoparticles with various aspect ratios through acidic and basic routes. Cryst. Growth Des. 6, 1054-1056.
  • KAYA, M., HUSSAINI, S., KURSUNOGLU, S., 2020. Critical review on secondary zinc resources and their recycling technologies. Hydrometallurgy 195, 105362.
  • KOK, M.V., SMYKATZ-KLOSS, W., 2001. Thermal characterization of dolomites. J. Therm. Anal. Calorim. 64, 1271-1275.
  • KONVICKA, T., MOSNER, P., SOLC, Z., 2000. Investigation of the non-isothermal kinetics of the formation of ZnFe2O4 and ZnCr2O4. J. Therm. Anal. Calorim. 60, 629-640.
  • KUMAS, C., 2020. Effects of Thermal Pretreatment on Hydrometallurgical Processing of a Zinc Carbonate Ore. PhD Thesis, Hacettepe University (in Turkish).
  • KUMAS, C., EHSANI, I., OBUT, A., 2020. Leaching properties of a dolomite containing zinc ore in sodium hydroxide solutions. Scientific Mining Journal 59, 93-100.
  • LAI, Y., MENG, M., YU, Y., WANG, X., DING, T., 2011. Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Appl. Catal. B Environ. 105, 335-345.
  • LI, H., NI, Y., HONG, J., 2009. Ultrasound-assisted preparation, characterization, and properties of flower-like ZnO microstructures. Scr. Mater. 60, 524-527.
  • LIU, H., CHEN, T., ZOU, X., QING, C., FROST, R.L., 2013. Thermal treatment of natural goethite: Thermal transformation and physical properties. Thermochim. Acta 568, 115-121.
  • LIU, Q., ZHAO, Y., ZHAO, G., 2011. Production of zinc and lead concentrates from lean oxidized zinc ores by alkaline leaching followed by two-step precipitation using sulfides. Hydrometallurgy 110, 79-84.
  • MOEZZI, A., CORTIE, M., MCDONAGH, A., 2011. Aqueous pathways for the formation of zinc oxide nanoparticles. Dalton T. 40, 4871-4878.
  • MORGAN, H.J., GRAY, J.D., 1950. Low-cost production of zinc dust from oxidized ores. Eng. Min. J. 151, 72-75.
  • MUJAHED, S.B., 1966. Electrowinning in Alkaline Medium-Electrolytic Production of Lead and Zinc from an Oxidized Ore from Develi (Kayseri) via Caustic Leaching. MSc Thesis, Middle East Technical University.
  • MUSIC, S., DRAGCEVIC, D., POPOVIC, S., 2007. Influence of synthesis route on the formation of ZnO particles and their morphologies. J. Alloys Compd. 429, 242-249.
  • NAYBOUR, R.D., 1968. Morphologies of zinc electrodeposited from zinc-saturated aqueous alkaline solution. Electrochim. Acta 13, 763-769.
  • OLIVEIRA, A.P.A., HOCHEPIED, J.F., GRILLON, F., BERGER, M.H., 2003. Controlled precipitation of zinc oxide particles at room temperature. Chem. Mater. 15, 3202-3207.
  • PRASAD, P.S.R., PRASAD, K.S., CHAITANYAB, V.K., BABUA, E.V.S.S.K., SREEDHARC, B., MURTHY, S.R., 2006. In situ FTIR study on the dehydration of natural goethite. J. Asian Earth Sci. 27, 503-511.
  • SANCHEZ, L., CASTILLO, C., CRUZ, W., YAURI, B., SOSA, M., LUYO, C., CANDAL, R., PONCE, S., RODRIGUEZ, J.M., 2019. ZnO (Ag-N) nanorods films optimized for photocatalytic water purification. Coatings 9, 767-782.
  • SCHOLDER, V.R., HENDRICH, G., 1939. Das system ZnO-Na2O-H2O. Z. Anorg. Allg. Chem. 241, 76-92.
  • SHABA, E.Y., JACOB, J.O., TIJANI, J.O., SULEIMAN, M.A.T., 2021. A critical review of synthesis parameters afecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Appl. Water Sci. 11, Article:48.
  • STEFANOVA, A., AROMAA, J., FORSEN, O., 2015. Alkaline leaching of zinc from stainless steel electric arc furnace dusts. Physicochem. Probl. Mi. 51, 293-302.
  • ST-PIERRE, J., PIRON, D.L., 1986. Electrowinning of zinc from alkaline solutions. J. Appl. Electrochem. 16, 447-456.
  • SUN, Y., CHEN, L., BAO, Y., ZHANG, Y., WANG, J., FU, M., WU, J., YE, D., 2016. The applications of morphology controlled ZnO in catalysis. Catalysts 6, 188-232.
  • TAKESUE, M., HAYASHI, H., SMITH, R. L., 2009. Thermal and chemical methods for producing zinc silicate (willemite): A review. Prog. Cryst. Growth Charact. Mater. 55, 98-124.
  • UEKAWA, N., YAMASHITA, R., JUN WU, Y., KAKEGAWA, K., 2004. Effect of alkali metal hydroxide on formation processes of zinc oxide crystallites from aqueous solutions containing Zn(OH)42− ions. Phys. Chem. Chem. Phys. 6, 442-446.
  • WANG, B.G., SHI, E.W., ZHONG, W.Z., 1997. Understanding and controlling the morphology of ZnO crystallites under hydrothermal conditions. Cryst. Res. Technol. 32, 659-667.
  • WANG, Y., MA, Q., JIA, H., WANG, Z., 2016. One-step solution synthesis and formation mechanism of flower-like ZnO and its structural and optical characterization. Ceram. Int. 42, 10751-10757.
  • WANG, Y.-M., 1990. Effect of KOH concentration on the formation and decomposition kinetics of calcium zincate. J. Electrochem. Soc. 137, 2800-2803.
  • WANG, Z., QIAN, X.F., YIN, J., ZHU, Z.K., 2004. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir 20, 3441-3448.
  • WEIR, C.E., LIPPINCOTT, E.R., 1961. Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. J. Res. N.B.S. A Phys. Ch. 65, 173-183.
  • YAMABI, S., IMAI, H., 2002. Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 12, 3773-3778.
  • ZHANG, P., LEE, T., XU, F., NAVROTSKY, A., 2008. Energetics of ZnO nanoneedles: surface enthalpy, stability, and growth. J. Mater. Res. 23, 1652-1657.
  • ZHANG, Y., DENG, J., CHEN, J., YU, R., XING, X., 2013. Leaching of zinc from calcined smithsonite using sodium hydroxide. Hydrometallurgy 131&132, 89-92.
  • ZHANG, Y., DENG, J., CHEN, J., YU, R., XING, X., 2014. The electrowinning of zinc from sodium hydroxide solutions. Hydrometallurgy 146, 59-63.
  • ZHANG, Y., MU, J., 2007. Controllable synthesis of flower- and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate. Nanotechnology 18, 1-6.
  • ZHAO, G., LIU, Q., 2011. Effects of impurities ions on zinc electrowinning process in alkaline leaching. Int. Conf. Biology, Environment & Chemistry, 28-30 December, Singapore, IACSIT Press, 1, pp.397-400.
  • ZHAO, Y., STANFORTH, R., 2000a. Production of Zn powder by alkaline treatment of smithsonite Zn-Pb ores. Hydrometallurgy 56, 237-249.
  • ZHAO, Y., STANFORTH, R., 2000b. Extraction of zinc from zinc ferrites by fusion with caustic soda. Miner. Eng. 13, 1417-1421.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecb58b7c-e4b8-4603-adbf-e7df4b9f5a8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.