PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Evolution of shallow post-bog soils developed on Holocene carbonate sediments in NW Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research presents the characteristics and inferred evolution of post-bog soils developed in the Last Glacial Maximum area of northwestern Poland near the southern Baltic coast. The study involved a total of five sites near existing lakes in NW Poland. In total, 21 soil pits were described and sampled and 17 piezometers were installed. In soil samples chemical and physical properties were determined. During the hydrological year the water level was checked and chemical properties of water were determined, the floristic composition at each location was also carried out. Mineralisation of post-bog soils initiated by dehydration leads to the decomposition of organic surface layers and an increase in CaCO3 content as well as mineral non-lime components at the expense of organic matter. A sequence of five soil types occurs in this landscape: Sapric Histosols (Limnic), Drainic Histosols (Calcaric, Limnic), Histic Gleysols (Murshic), Umbric Gleysols (Hyperhumic), Gleyic Phaeozems (Hyperhumic) that represent individual stages of soil genesis. Differences between the chemical properties of soils are apparent between organic vs organic-mineral and mineral layers. Man-induced drainage of post-bog soils changes their physical parameters. Bulk density increase and water retention decrease. The fluctuation of groundwater determines the moisture content of post-bog soils and affects the species composition of vegetation. Chemistry of groundwater is shaped mainly by the construction of catchment and the nature of its use, however, it is modified as a result of the inflow of macronutrients released during organic matter mineralisation processes and leaching of exchangeable forms from the sorption complex.
Wydawca
Rocznik
Tom
Strony
99--109
Opis fizyczny
Bibliogr. 56 poz., fot., rys., tab., wykr.
Twórcy
  • West Pomeranian University of Technology, Department of Environmental Management, Juliusza Słowackiego St, 17, 71-434 Szczecin, Poland
  • West Pomeranian University of Technology, Department of Environmental Management, Juliusza Słowackiego St, 17, 71-434 Szczecin, Poland
  • West Pomeranian University of Technology, Department of Environmental Management, Juliusza Słowackiego St, 17, 71-434 Szczecin, Poland
Bibliografia
  • Bothe, H. (2015) “The lime–silicate question,” Soil Biology & Biochemistry, 89, pp. 172–183. Available at: https://doi.org/10.1016/j.soilbio.2015.07.004.
  • Brouns, K., Verhoeven, J.T.A. and Hefting, M.M. (2014) “Short period of oxygenation releases latch on peat decomposition,” Science of the Total Environment, 481, pp. 61–68. Available at: https://doi.org/10.1016/j.scitotenv.2014.02.030.
  • Cabezas, A. et al. (2012) “Effects of degree of peat decomposition, loading rate and temperature on dissolved nitrogen turnover in rewetted fens,” Soil Biology & Biochemistry, 48, pp. 182–191. Available at: https://doi.org/10.1016/j.soilbio.2012.01.027.
  • Chimner, R.A. and Cooper, D.A. (2003) “Influence of water table levels on CO 2 emissions in a Colorado subalpine fen: an in situ microcosm study,” Soil Biology & Biochemistry, 35(3), pp. 345–351. Available at: https://doi.org/10.1016/s0038-0717(02)00284-5.
  • Choiński, A. (2013) Katalog jezior Polski [Catalog of Polish lakes]. Poznań: Wyd. Nauk. UAM.
  • Choiński, A., Ptak, M. and Strzelczak, A. (2012) “Examples of lake disappearance as an effect of reclamation works in Poland,” Limnological Review, 12(4), pp. 161–167. Available at: https://doi.org/10.2478/v10194-012-0056-2.
  • Collins, M.E. and Kuehl, R.J. (2001) “Organic matter accumulation and organic soils,” in J.L. Richardson and M.J. Vepraskas (eds.) Wetland soils: Genesis, hydrology, landscapes and classification. Boca Raton, Florida: Lewis Publishers, pp. 137–162.
  • Craft, C.B. (2001) “Biology of wetland soils,” in J.L. Richardson and M.J. Vepraskas (eds.) Wetland soils: Genesis, hydrology, landscapes and classification. Boca Raton Florida: Lewis Publishers, pp. 107–135.
  • Dawson, Q. et al. (2010) “Subsidence and degradation of agricultural peatlands in the Fenlands of Norfolk, UK,” Geoderma, 154(3–4), pp. 181–187. Available at: https://doi.org/10.1016/j.geoderma.2009.09.017.
  • Dobrowolski, R. et al. (2010) “Radiocarbon age and geochemistry of the infillings of small closed depressions from Western Polesie (Poland Se, Ukraine Nw),” Geochronometria, 36(1), pp. 39–46. Available at: https://doi.org/10.2478/v10003-010-0010-8.
  • Ewing, J.M. et al. (2012) “Changes in wetland soil morphological and chemical properties after 15, 20, and 30 years of agricultural production,” Geoderma, 179–180, pp. 73–80. Available at: https://doi.org/10.1016/j.geoderma.2012.02.018.
  • Fell, H. et al. (2016) “Estimating vulnerability of agriculturally used peatlands in north-east Germany to carbon loss based on multi-temporal subsidence data analysis,” Catena, 137, pp. 61–69. Available at: https://doi.org/10.1016/j.catena.2015.08.010.
  • Filipiak, J. and Raczyński, M. (2000) Jeziora zachodniopomorskie (zarys faktografii) [West Pomeranian Lakes (outline)]. Szczecin: Wydawnictwo AR.
  • FAO (2015) “World reference base for soil resources 2014: International soil classification systems for naming soils and creating legends for soil maps,” World Soil Resources Reports, 106. Rome: Food and Agriculture Organization of the United Nations.
  • Freytet, P. and Verrecchia, E.P. (2002) “Lacustrine and palustrine carbonate petrography: An overview,” Journal of Paleolimnology, 27(2), pp. 221–237. Available at: https://doi.org/10.1023/a:1014263722766.
  • Geurts, J. et al. (2010) “The interaction between decomposition, net N and P mineralization and their mobilization to the surface water in fens,” Water Research, 44(11), pp. 3487–3495. Available at: https://doi.org/10.1016/j.watres.2010.03.030.
  • PGI (2022) “Złoża kopalin [Mineral deposits],” in System Gospodarki i Ochrony Bogactw Mineralnych “Midas” [System of Management and Protection of Mineral Resources "Midas] Available at: http://geoportal.pgi.gov.pl/midas-web (Accessed: November, 14, 2022).
  • Gąsiorek, E. and Musiał, E. (2011) „Porównanie i klasyfikacja warunków opadowych na podstawie wskaźnika standaryzowanego opadu i wskaźnika względnego opadu [Comparison and classification of precipitation conditions based on standardized SPI and relative precipitation indices,” Woda-Środowisko-Obszary Wiejskie, 11(4), pp. 107–119.
  • Gierlowski-Kordesch, E. (2010) “Chapter 1. Lacustrine carbonates,” in Developments in sedimentology. Elsevier BV, pp. 1–101. Available at: https://doi.org/10.1016/s0070-4571(09)06101-9.
  • Glatzel, S., Lemke, S. and Gerold, G. (2006) “Short-term effects of an exceptionally hot and dry summer on decomposition of surface peat in a restored temperate bog,” European Journal of Soil Biology, 42(4), pp. 219–229. Available at: https://doi.org/10.1016/j.ejsobi.2006.03.003.
  • Gnatowski, T. et al. (2010) “Hydraulic properties of fen peat soils in Poland,” Geoderma, 154(3–4), pp. 188–195. Available at: https://doi.org/10.1016/j.geoderma.2009.02.021.
  • GUGiK (2022) Digital Elevation Model (DEM). Warszawa: Head Office of Geodesy and Cartography. Available at: https://mapy.geoportal.gov.pl/ (Accessed: November 20, 2022).
  • Ilnicki, P. (2002) Torfowiska i torf [Peatlands and peat]. Poznań: Wydaw. Akademii Rolniczej w Poznaniu.
  • IMGW-PIB (2023) Dane meteorologiczne [Meteorological data]. Warszawa: Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy. Available at: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/ (Accessed: March 2, 2023).
  • Jarnuszewski, G. (2015) “Chemical properties of organic soils developed from lacustrine chalk near the lakes Strzeszowskie, Sitno, and Sierakowo (Western Pomerania, north Poland),” Roczniki Gleboznawcze, 66(4), pp. 168–179. Available at: https://doi.org/10.1515/ssa-2015-0034.
  • Jarnuszewski, G. (2016) “Characterization of some physical and chemical properties of post-bog soils developed from limnic deposits in vicinity of lake Dubie (Western Pomerania, NW Poland),” Roczniki Gleboznawcze, 67(1), pp. 24–31. Available at: https://doi.org/10.1515/ssa-2016-0004.
  • Jaszczyński, J. (2008) “Groundwater quality against a background of human activities and impact of peatland area,” Agronomy Research, 6, pp. 121–129.
  • Kabała, C. et al. (2019) “Polish Soil Classification, 6th edition – principles, classification scheme and correlations,” Roczniki Gleboznawcze, 70(2), pp. 71–97. Available at: https://doi.org/10.2478/ssa-2019-0009.
  • Kaczorowska, Z. (1962) “Opady w Polsce w przekroju wieloletnim Precipitation in Poland in long-period averages],” Prace Geograficzne, 33. Warszawa: IGiPZ PAN, Wydaw. Geologiczne.
  • Kaiser, K. et al. (2012) “Late Quaternary evolution of rivers, lakes and peatlands in northeast Germany reflecting past climatic and human impact – An overview,” Eiszeitalter und Gegenwart, 61(2), pp. 103–132. Available at: https://doi.org/10.3285/eg.61.2.01.
  • Kechavarzi, C., Dawson, Q. and Leeds-Harrison, P.B. (2010) “Physical properties of low-lying agricultural peat soils in England,” Geoderma, 154(3–4), pp. 196–202. Available at: https://doi.org/10.1016/j.geoderma.2009.08.018.
  • Kelts, K. and Hsü, K.J. (1978) “Freshwater carbonate sedimentation,” in A. Lerman (ed.) Lakes: Chemistry, geology, physics. New York, NY: Springer, pp. 295–323. Available at: https://doi.org/10.1007/978-1-4757-1152-3_9.
  • Kitczak, T. et al. (2014) “Wpływ warunków siedliskowych na skład florystyczny, wartość użytkową i walory przyrodnicze użytków zielonych położonych nad jeziorem Miedwie [Effect of habitat for floristic composition, value in use natural values and green land located on Lake Miedwie],” Inżynieria Ekologiczna, 38, pp. 60–69. Available at: https://doi.org/10.12912/2081139X.34.
  • Koźmiński, C., Michalska, B. and Czarnecka, M. (2007) Klimat województwa zachodniopomorskiego [The climate of the West Pomeranian Voivodeship]. Szczecin: Akademia Rolnicza, Uniwersytet Szczeciński.
  • Könönen, M. et al. (2015) „Physical and chemical properties of tropi cal peat under stabilised land uses,” Mires and Peat, 16, pp. 1–13.
  • Łachacz, A., Nitkiewicz, M. and Pisarek, W. (2009), “Soil conditions and vegetation on gyttia lands in the Masurian Lakeland,” Contemporary Problems of Management and Environmental Protection, 2, pp. 61–94.
  • Marcinek, J. and Spychalski, M. (1998) “Degradacja gleb organicznych doliny Obry po ich odwodnieniu i wieloletnim rolniczym użytkowaniu [Degradation of organic soils in Obra river valley after their drainage and many year agricultural use],” Zeszyty Problemowe Postępów Nauk Rolniczych, 460, pp. 219–236.
  • McCarter, C.P.R. et al. (2020) “Pore-scale controls on hydrological and geochemical processes in peat: Implications on interacting processes,” Earth-Science Reviews, 207, 103227. Available at: https://doi.org/10.1016/j.earscirev.2020.103227.
  • Meller, E. (2006) “Płytkie gleby organogeniczno-węglanowe na kredzie jeziornej i ich przeobrażenia w wyniku uprawy [Shallow organogenic-calcareous soils on lacustrine chalk and their transformation resulted from cultivation],” AR w Szczecinie. Rozprawy, 233.
  • Offermanns, L. et al. (2023) “High greenhouse gas emissions after grassland renewal on bog peat soil,” Agricultural and Forest Meteorology, 331, 109309. Available at: https://doi.org/10.1016/j.agrformet.2023.109309.
  • Okruszko, H. (1988) “Zasady podziału gleb hydrogenicznych na rodzaje oraz łączenia rodzajów w kompleksy [Taxonomy of hydrogenic soils and joining them into soils complex],” Roczniki Gleboznawcze, 39(1), pp. 127–152.
  • Okupny, D. et al. (2016) “Factors influencing temporal changes in chemical composition of biogenic deposits in the middle Tążyna River Valley (Kuyavian Lakeland, central Poland),” Geologos, 22(2), pp. 121–136. Available at: https://doi.org/10.1515/logos-2016-0013.
  • Oleszczuk, R. and Truba, M. (2013) “The analysis of some physical properties of drained peat-moorsh soil layers,” Annals of Warsaw University of Life Sciences, Land Reclamation, 45(1), pp. 41–48. Available at: https://doi.org/10.2478/sggw-2013-0004.
  • Orzechowski, M., Smólczyński, S. and Sowiński, P. (2004) “Przekształcenia antropogeniczne gleb obniżeń śródmorenowych Pojezierza Mazurskiego [Anthropogenic transformations of the mid-moraine depression soils in the Mazurian Lakeland],” Roczniki Geboznawcze, 55(2), pp. 311–320.
  • Piaścik, H. and Gotkiewicz, J. (2004) “Przeobrażenia odwodnionych gleb torfowych jako przyczyna ich degradacji [Transformation of dewatered peat soils as the cause of their degradation],” Roczniki Gleboznawcze, 55(2), pp. 331–338.
  • PN-ISO 11466:2002. Jakość gleby. Ekstrakcja pierwiastków śladowych rozpuszczalnych w wodzie królewskiej [Soil quality. Extraction of aqua regia soluble trace elements]. Warszawa: Polski Komitet Normalizacyjny.
  • PN-R-04014: 1991. 1991. Analiza chemiczno-rolnicza roślin. Metody mineralizacji materiału roślinnego do oznaczania makro- i mikroelementów [Chemical and agricultural analysis of plants. Methods of mineralization of plant material for the determination of macro- and microelements]. Warszawa: Polski Komitet Normalizacyjny.
  • Prończuk, J. (1962) “Typologiczne zasady różnicowania trwałych użytków zielonych na przykładzie wydzielonych typów florystycznych w dolinach rzek niżu [Typological principles of diversification of permanent grassland on the example of specific floristic types in low river valleys]," in Zastosowanie metody fitosocjologicznej i typologicznej do badań i ekspertyz łąkarskich [Application of phytosociological and typological methods for meadow studies and expert opinions], Biblioteczka Wiadomości IMUZ, 5, pp. 65-189.
  • PTG (2019) Systematyka gleb Polski [Polish soil classification]. Wrocław–Warszawa: Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze.
  • Säurich, A. et al. (2019) “Drained organic soils under agriculture – The more degraded the soil the higher the specific basal respiration,” Geoderma, 355, 113911. Available at: https://doi.org/10.1016/j.geoderma.2019.113911.
  • Schnurrenberger, D., Russell, J.A. and Kelts, K. (2003) “Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology, 29(2), pp. 141–154. Available at: https://doi.org/10.1023/a:1023270324800.
  • StatSoft (2014) STATISTICA (data analysis software system), version 12.
  • Verry, E.S. et al. (2011) “Physical properties of organic soils,” in R.K Kolka et al. (eds.) Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. Boca Raton, FL: CRC Press, pp. 135–176.
  • Wallor, E. and Zeitz, J. (2016) “How properties of differently cultivated fen soils affect grassland productivity – A broad investigation of environmental interactions in Northeast Germany,” Catena, 147, pp. 288–299. Available at: https://doi.org/10.1016/j.catena.2016.07.024.
  • Wołejko, L., Herbichowa, M. and Potocka, J. (2005) “Typological differentiation and status of Natura 2000 mire habitats in Poland,” Stapfia, 85, pp. 175–219.
  • Yli-Halla, M. et al. (2022) “Thickness of peat influences the leaching of substances and greenhouse gas emissions from a cultivated organic soil,” Science of the Total Environment, 806, 150499. Available at: https://doi.org/10.1016/j.scitotenv.2021.150499.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecb2678e-7813-40b8-b696-556e61cf47d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.