PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ecosystem of the Polish part of the Vistula Lagoon from the perspective of alternative stable states concept, with implications for management issues

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The alternative stable states concept finds broad application in reference to both terrestrial and aquatic ecosystems. For some reason, attempts to implement the concept to explain processes observed in estuaries and Baltic lagoons are very rare. Based on information included in publications issued over the last 60 years, three co-existing states were designated within the strongly elongated basin the Vistula Lagoon, namely: phytoplankton-dominated (Middle Basin), macrophyte-dominated (Elbląg Bay), and transition state balancing between the two former ones (West Basin). Regions of the lagoon representing such states are similar in terms of nutrient concentrations, but they considerably differ in terms of: exposure to wind and wave action, salinity, anthropogenic impact, and multi-level top-down regulations. The paper discusses the role of such drivers, responsible for both the maintenance of a given state, and the past transition into the present alternative state. Moreover, it presents chances for the improvement of the situation, as well as threats which can undermine them.
Czasopismo
Rocznik
Strony
390--404
Opis fizyczny
Bibliogr. 99 poz., fot., mapy, tab., wykr.
Twórcy
autor
  • Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
Bibliografia
  • [1] Bakker, E. S., Wood, K. A., Pages, J. F., Veen, G. F., Christianen, M. J. A., Santamaria, L., Nolet, B. A., Hilt, S., 2016. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquat. Bot. 135, 18-36, http://dx.doi.org/10.1016/j.aquabot.2016.04.008.
  • [2] Berthold, M., Karstens, S., Buczko, U., Schumann, R., 2018. Potential export of soluble reactive phosphorus from a coastal wetland in a cold-temperate lagoon system: buffer capacities of macrophytes and impact on phytoplankton. Sci. Tot. Env. 616-617, 46-54, http://dx.doi.org/10.1016/j.scitotenv.2017.10.244.
  • [3] Blindow, I., Hargeby, A., Hilt, S., 2014. Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia 737 (1), 99-110, http://dx.doi.org/10.1007/s10750-013-1687-2.
  • [4] Borowski, W., Dąbrowski, H., 1998. The influence of dredging on the ecological value of pikeperch and common bream spawning grounds near Gold Island in the Vistula Lagoon. Rep. Sea Fish. Inst. 1997. 102-110.
  • [5] Brooke, L. T., Call, D. J., Poirier, S. H., Markee, T. P., Lindberg, C. A., McCauley, D. J., Simonson, P. G., 1986. Acute toxicity and chronic effects of bi(tri-butyltin) oxide to several species of freshwater organisms. Center for Lake Superior Environmental Studies Report, Univ. Wisconsin, Superior, WI, p. 20.
  • [6] Cerco, C. F., Noel, M. R., 2010. Monitoring, modeling, and management impacts of bivalve filter feeders in the oligohaline and tidal fresh regions of the Chesapeake Bay system. Ecol. Model. 221 (7), 1054-1064, http://dx.doi.org/10.1016/j.ecolmodel.2009.07.024.
  • [7] Chmara, R., 2012. Vegetation and habitats. In: Przewoźniak, M. (Ed.), Environmental Impact Assessment of the Long-term Program. Construction of a Waterway Connecting the Vistula Lagoon with the Gdańsk Bay. Biuro Projektów i Wdrożeń Ekologicznych PROEKO, 132-139, (in Polish).
  • [8] Christianen, M. J. A., van Belzen, J., Herman, P. M. J., van Katwijk, M. M., Lamers, L. P. M., van Leent, P. J. M., Bouma, T. J., 2013. Low-canopy seagrass beds still provide important coastal protection services. PLoS ONE 8 (5), e62413, http://dx.doi.org/10.1371/journal.pone.0062413.
  • [9] Chubarenko, B. V., Leitsina, L. V., Esiukova, E. E., Kurennoy, D. N., 2012. Model analysis of the currents and wind waves in the Vistula Lagoon of the Baltic Sea. Oceanology 52 (6), 748-753, http://dx.doi.org/10.1134/S000143701206001x.
  • [10] Cieśliński, R., 2002. An attempt to assess the impact of pollutants from the territory of Elbląg City on the water quality of Elbląg River. In: Górka, Z. Z., Jelonek, A. (Eds.), Geographical Determinants of the Development of Małopolska, Inst. Geogr. Spatial Manage., Jagiellonian Univ., Kraków, 139-145, (in Polish).
  • [11] Coops, H., Boeters, R., Smit, H., 1991. Direct and indirect effects of wave attack on helophytes. Aquat. Bot. 41 (4), 333-352, http://dx.doi.org/10.1016/0304-3770(91)90052-7.
  • [12] Dahlgren, S., Kautsky, L., 2004. Can different vegetative states in shallow coastal bays of the Baltic Sea be linked to internal nutrient levels and external nutrient load? Hydrobiologia 514 (1-3), 249-258, http://dx.doi.org/10.1007/978-94-017-0920-0_23.
  • [13] Dmitrieva, O. A., Semenova, A. S., 2012. Seasonal dynamics and trophic interactions of phytoplankton and zooplankton in the Vistula Lagoon of the Baltic Sea. Oceanology 52 (6), 785-789, http://dx.doi.org/10.1134/S0001437012060033.
  • [14] Ekblad, C. M. S., Sulkava, S., Stjernberg, T. G., Laaksonen, T. K., 2016. Landscae-pscale gradients and temporal changes in the prey species of the white-tailed eagle (Haliaeetus albicilla). Ann. Zool. Fenn. 53 (3-4), 228-240.
  • [15] Eriksson, B. K., Ljunggren, L., Sandstrom, A., Johansson, G., Mattila, J., Rubach, A., Raberg, S., Snickars, M., 2009. Declines in predatory fish promote bloom-forming macroalgae. Ecol. Appl. 19 (8), 1975-1988, http://dx.doi.org/10.1890/08-0964.1.
  • [16] Ezhova, E., Żmudziński, L., Maciejewska, K., 2005. Long-term trends in the macrozoobenthos of the Vistula Lagoon, southeastern Baltic Sea. Species composition and biomass distribution. Bull. Sea Fish. Inst. 1, 55-73.
  • [17] Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., Holling, C. S., 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557-581, http://dx.doi.org/10.1146/annurev.ecolsys.35.021103.105711.
  • [18] Gajewski, L. (Ed.), 2010. Research of the Vistula Lagoon bottom (including the Elbląg Bay). Final Report. Report No. 334. Maritime Inst., Gdańsk; Maritime Office, Gdynia, 1-96, (in Polish).
  • [19] Glasby, G. P., Szefer, P., 1998. Marine pollution in Gdańsk Bay, Puck Bay and the Vistula Lagoon, Poland: an overview. Sci. Total Environ. 212 (1), 49-57.
  • [20] Goc, M., Mokwa, T., 2012. Birds. In: Przewoźniak, M. (Ed.), Construction of a waterway connecting the Vistula Lagoon with the Gdańsk Bay, Biuro Projekt. Wdroż. Ekol. PROEKO, 145-155, (in Polish).
  • [21] Green, M. O., Coco, G., 2014. Review of wave-driven sediment resuspension and transport in estuaries. Rev. Geophys. 52 (1), 77-117, http://dx.doi.org/10.1002/2013rg000437.
  • [22] Gremillet, D., Nazirides, T., Nikolaou, H., Crivelli, A. J., 2012. Fish are not safe from great cormorants in turbid water. Aquat. Biol. 15 (2), 187-194, http://dx.doi.org/10.3354/ab00430.
  • [23] Grzyb, A., 2012. The “match-mismatch” phenomenon and the effect of larval density as a proposal to explain the herring recruitment mechanism in the Vistula Lagoon. (PhD Thesis). Inst. Inland Fish, Olsztyn, (in Polish).
  • [24] Hakanson, L., Bryhn, A. C., 2008. Goals and remedial strategies for water quality and wildlife management in a coastal lagoon — a case-study of Ringkobing Fjord, Denmark. J. Environ. Manage. 86 (3), 498-519, http://dx.doi.org/10.1016/j.jenvman.2006.12.006.
  • [25] Hakanson, L., Lindgren, D., 2008. On regime shifts and budgets for nutrients in the open Baltic Proper: evaluations based on extensive data between 1974 and 2005. J. Coast. Res. 24 (4c), 246-260, http://dx.doi.org/10.2112/07-0870.1.
  • [26] Hidding, B., Bakker, E. S., Hootsmans, M. J. M., Hilt, S., 2016. Synergy between shading and herbivory triggers macrophyte loss and regime shifts in aquatic systems. Oikos 125 (10), 1489-1495, http://dx.doi.org/10.1111/oik.03104.
  • [27] Holling, C. S., 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1-23, http://dx.doi.org/10.1146/annurev.es.04.110173.000245.
  • [28] Holmes, R. W., 1970. The Secchi disk in turbid coastal waters. Limnol. Oceanogr. 15 (5), 688-694.
  • [29] Horppila, J., Liljendahl-Nurminen, A., 2005. Clay-turbid interactions may not cascade — a reminder for lake managers. Restor. Ecol. 13 (3), 242-246, http://dx.doi.org/10.1111/j.1526-100X.2005.00031.x.
  • [30] Hughes, T. P., Carpenter, S., Rockstrom, J., Scheffer, M., Walker, B., 2013. Multiscale regime shifts and planetary boundaries. Trends Ecol. Evol. 28 (7), 389-395, http://dx.doi.org/10.1016/j.tree.2012.08.022.
  • [31] Jabłońska-Barna, I., Rychter, A., Kruk, M., 2013. Biocontamination of the western Vistula Lagoon (south-eastern Baltic Sea, Poland). Oceanologia 55 (3), 751-763, http://dx.doi.org/10.5697/oc.55-3.751.
  • [32] Jeppesen, E., Sondergaard, M., Kanstrup, E., Petersen, B., Eriksen, R. B., Hammershoj, M., Mortensen, E., Jensen, J. P., Have, A., 1994. Does the impact of nutrients on the biological structure and function of brackish and fresh-water lakes differ? Hydrobiologia 275 (1), 15-30, http://dx.doi.org/10.1007/BF00026696.
  • [33] Jeppesen, E., Sondergaard, M., Pedersen, A. R., Jurgens, K., Strzelczak, A., Lauridsen, T. L., Johansson, L. S., 2007. Salinity induced regime shift in shallow brackish lagoons. Ecosystems 10 (1), 48-58, http://dx.doi.org/10.1007/s10021-006-9007-6.
  • [34] Knowlton, N., 2004. Multiple “stable” states and the conservation of marine ecosystems. Prog. Oceanogr. 60 (2-4), 387-396, http://dx.doi.org/10.1016/j.pocean.2004.02.011.
  • [35] Kornijów, R., 1996. Cumulative consumption of the lake macrophyte Elodea by abundant generalist invertebrate herbivores. Hydrobiologia 319, 185-190, http://dx.doi.org/10.1007/Bf00013731.
  • [36] Kornijów, R., 2018. Chapter 7.8. Trophic interactions versus salinity and water quality in the Vistula Lagoon. Current status and threats. In: Bolałek, J. (Ed.), The Vistula Lagoon at the Beginning of the 21st Century. PWN, Warsaw (in press, in Polish).
  • [37] Kornijów, R., Measey, G. J., Moss, B., 2016. The structure of the littoral: effects of waterlily density and perch predation on sediment and plant-associated macroinvertebrate communities. Freshw. Biol. 61 (1), 32-50, http://dx.doi.org/10.1111/fwb.12674.
  • [38] Kornijów, R., Pawlikowski, K., 2015. Three-dimensional microdistribution of Chironomus balatonicus larvae (Chironomidae, Diptera) in soft sediments from the Vistula Lagoon (South Baltic Sea). Ann. Limnol. — Int. J. Limnol. 51 (4), 343-349, http://dx.doi.org/10.1051/limn/2015034.
  • [39] Kornijów, R., Pawlikowski, K., Drgas, A., Rolbiecki, L., Rychter, A., 2018. Mortality of post-settlement clams Rangia cuneata (Mactridae, Bivalvia) at an early stage of invasion in the Vistula Lagoon (South Baltic) due to biotic and abiotic factors. Hydrobiologia, 13 pp. http://dx.doi.org/10.1007/s10750-017-3489-4.
  • [40] Krause-Jensen, D., Sagert, S., Schubert, H., Bostrom, C., 2008. Empirical relationships linking distribution and abundance of marine vegetation to eutrophication. Ecol. Indic. 8 (5), 515-529, http://dx.doi.org/10.1016/j.ecolind.2007.06.004.
  • [41] Latała, A., 1978. Chlorophyll content in the waters of the Vistula Lagoon. Stud. Mat. Oceanol., Biol. Morza 21 (4), 82-94.
  • [42] Lawson, S. E., Wiberg, P. L., McGlathery, K. J., Fugate, D. C., 2007. Wind-driven sediment suspension controls light availability in a shallow coastal lagoon. Estuar. Coast. 30 (1), 102-112, http://dx.doi.org/10.1007/BF02782971.
  • [43] Leah, R. T., Moss, B., Forrest, D. E., 1980. The role of predation in causing major changes in the limnology of a hyper-eutrophic Lake. Int. Rev. Ges. Hydrobiol. 65 (2), 223-247, http://dx.doi.org/10.1002/iroh.19800650205.
  • [44] Lehtiniemi, M., Gorokhova, E., 2008. Predation of the introduced cladoceran Cercopagis pengoi on the native copepod Eurytemora affinis in the northern Baltic Sea. Mar. Ecol. Prog. Ser. 362, 193-200, http://dx.doi.org/10.3354/meps07441.
  • [45] Lesutiene, J., Gasiunaite, Z. R., Strikaityte, R., Ziliene, R., 2014. Trophic position and basal energy sources of the invasive prawn Palaemon elegans in the exposed littoral of the SE Baltic Sea. Aquat. Invasions 9 (1), 37-45, http://dx.doi.org/10.3391/ai.2014.9.1.03.
  • [46] Lyytimäki, J., Hildén, M., 2007. Thresholds of sustainability: policy challenges of regime shifts in coastal areas. Sustainability Sci. Pract. Policy 3 (2), 61-69, http://dx.doi.org/10.1080/15487733.2007.11908007.
  • [47] Łomniewski, K., 1958. The Firth of Vistula. PWN, Warsaw, 106 pp. (in Polish).
  • [48] Margoński, P., Horbowa, K., 2003. Are there trends in water quality, chlorophyll a and zooplankton of the Vistula Lagoon (Southern Baltic Sea) as a result of changes in nutrient loads? In: Dublin ECSA 9 Nutrients, 6-162. Diffuse Pollution Conference ECSA 9 Nutrients, Dublin, 6-14.
  • [49] Moller, I., Mantilla-Contreras, J., Spencer, T., Hayes, A., 2011. Microtidal coastal reed beds: hydro-morphological insights and observations on wave transformation from the southern Baltic Sea. Estuar. Coast. Shelf Sci. 92 (3), 424-436, http://dx.doi.org/10.1016/j.ecss.2011.01.016.
  • [50] Mollmann, C., Folke, C., Edwards, M., Conversi, A., 2015. Marine regime shifts around the globe: theory, drivers and impacts. Philos. Trans. R. Soc. B 370 (1659), http://dx.doi.org/10.1098/rstb.2013.0260.
  • [51] Moss, B., 1994. Brackish and freshwater shallow lakes — different systems or variations on the same theme? Hydrobiologia 275 (1), 1-14, http://dx.doi.org/10.1007/BF00026695.
  • [52] Moss, B., 2007. The art and science of lake restoration. Hydrobiologia 581 (1), 15-24, http://dx.doi.org/10.1007/s10750-006-0524-2.
  • [53] Moss, B., Madgwick, J., Phillips, G., 1996. A Guide to the Restoration of Nutrient-enriched Shallow Lakes. Broads Authority, 18 Colegate, Norwich, Norfolk, 180 pp.
  • [54] Munkes, B., 2005. Eutrophication, phase shift, the delay and the potential return in The Greifswalder Bodden, Baltic Sea. Aquat. Sci. 67 (3), 372-381, http://dx.doi.org/10.1007/s00027-005-0761-x.
  • [55] Naumenko, E. N., 2009. Zooplankton in different types of estuaries (using Curonian and Vistula estuaries as an example). Inland Water Biol. 2 (1), 72-81, http://dx.doi.org/10.1134/S1995082909010118.
  • [56] Nawrocka, L., Kobos, J., 2011. The trophic state of the Vistula Lagoon: an assessment based on selected biotic and abiotic parameters according to the Water Framework Directive. Oceanologia 53 (3), 881-894, http://dx.doi.org/10.5697/oc.53-3.881.
  • [57] Nermer, T., Grochowski, A., Fey, D., Ramutkowski, M., Szymanek, L., Lejk, A., Psuty, I., 2011. Inventory of ichtiofanua in the Polish part of the Vistula Lagoon, including the Elbląg Bay. Nat. Mar. Fish. Inst. Gdynia, 111 pp. (in Polish).
  • [58] Paturej, E., Gutkowska, A., 2015. The effect of salinity levels on the structure of zooplankton communities. Arch. Biol. Sci. 67 (2), 483-492, http://dx.doi.org/10.2298/abs140910012p.
  • [59] Paturej, E., Gutkowska, A., Koszalka, J., Bowszys, M., 2017. Effect of physicochemical parameters on zooplankton in the brackish, coastal Vistula Lagoon. Oceanologia 59 (1), 49-56, http://dx.doi.org/10.1016/j.oceano.2016.08.001.
  • [60] Paturej, E., Kruk, M., 2011. The impact of environmental factors on zooplankton communities in the Vistula Lagoon. Oceanol. Hydrobiol. Stud. 40 (2), 37-48, http://dx.doi.org/10.2478/s13545-011-0015-6.
  • [61] Pawlik-Skowronska, B., Pirszel, J., Kornijów, R., 2008. Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhii in a hypertrophic lake. Ann. Limnol. — Int. J. Limnol. 44 (2), 145-150, http://dx.doi.org/10.1051/Limn:2008015.
  • [62] Pawlikowski, K., Kornijów, R., 2018. Role of macrophytes in structuring littoral habitats in the Vistula Lagoon (South Baltic). Oceanologia (in press).
  • [63] Penning, W. E., Genseberger, M., Uittenbogaard, R. E., Cornelisse, J. C., 2013. Quantifying measures to limit wind-driven resuspension of sediments for improvement of the ecological quality in some shallow Dutch lakes. Hydrobiologia 710 (1), 279-295, http://dx.doi.org/10.1007/s10750-012-1026-z.
  • [64] Perez-Ruzafa, A., Marcos, C., Perez-Ruzafa, I. M., Perez-Marcos, M., 2011. Coastal lagoons: “transitional ecosystems” between transitional and coastal waters. J. Coast. Conserv. 15 (3), 369-392, http://dx.doi.org/10.1007/s11852-010-0095-2.
  • [65] Petraitis, P. S., Dudgeon, S. R., 2004. Detection of alternative stable states in marine communities. J. Exp. Mar. Biol. Ecol. 300 (1-2), 343-371, http://dx.doi.org/10.1016/j.jembe.2003.12.026.
  • [66] Phillips, G., Willby, N., Moss, B., 2016. Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquat. Bot. 135, 37-45, http://dx.doi.org/10.1016/j.aquabot.2016.04.004.
  • [67] Pliński, M., 1995. Vascular plants of the northern part of the Vistula Lagoon. Bull. Marit. Inst. 22 (2), 81-87.
  • [68] Pliński, M., Kreńska, B., Wnorowski, T., 1978. Floristic relations and biomass of vascular plants in the Vistula lagoon. Stud. Mater. Oceanol., Biol. Morza 21 (4), 161-196, (in Polish).
  • [69] Pliński, M., Simm, A., 1978. Seasonal fluctuations in the composition, distribution and quantity of phytoplankton in the Vistula Lagoon in 1974 and 1975. Stud. Mater. Oceanol., Biol. Morza 4 (21), 53-80.
  • [70] Psuty-Lipska, I., Borowski, W., 2003. Factors affecting fish assemblages in the Vistula Lagoon. Arch. Fish. Mar. Res. 50 (3), 253-270.
  • [71] Psuty, I., Wilkońska, H., 2009. The stability of fish assemblages under unstable conditions: a ten-year series from the Polish part of the Vistula Lagoon. Arch. Pol. Fish. 17 (2), 65-76, http://dx.doi.org/10.2478/v10086-009-0004-1.
  • [72] Renk, H., Ochocki, S., Zalewski, M., Chmielowski, H., 2001. Environmental factors controlling primary production in the Polish part of the Vistula. Rep. Sea Fish. Inst. Gdynia 152, 77-95.
  • [73] Richman, S., Heinle, D. R., Huff, R., 1977. Grazing by adult estuarine Calanoid copepods of Chesapeake Bay. Mar. Biol. 42 (1), 69-84, http://dx.doi.org/10.1007/bf00392015.
  • [74] Ringer, Z., 1959. An attempt to estimate the biomass of the littoral flora of the Vistula Lagoon based on the studies carried out in 1955. Prace Mor. Inst. Rybac. Gdyni 10/A, 193-214, (in Polish).
  • [75] Rosqvist, K., Mattila, J., Sandstrom, A., Snickars, M., Westernerbom, M., 2010. Regime shifts in vegetation composition of Baltic Sea coastal lagoons. Aquat. Bot. 93 (1), 39-46, http://dx.doi.org/10.1016/j.aquabot.2010.03.002.
  • [76] Różańska, Z., Wiktor, K., 1978. Summary of the results of investigations of the Vistula Lagoon in 1974-1975. Stud. Mater. Oceanogr., Biol. Morza 21 (4), 197-204, (in Polish).
  • [77] Rupprecht, F., Moller, I. I., Paul, M., Kudella, M., Spencer, T., van Wesenbeeck, B. K., Wolters, G., Jensen, K., Bouma, T. J., Miranda-Lange, M., Schimmels, S., 2017. Vegetation-wave interactions in salt marshes under storm surge conditions. Ecol. Eng. 100, 301-315, http://dx.doi.org/10.1016/j.ecoleng.2016.12.030.
  • [78] Rybicka, D., 2005. Potentially toxic blue-green algae [Cyanoprokaryota] in the Vistula Lagoon. Oceanol. Hydrobiol. Stud. 34 (Suppl. 3), 161-176.
  • [79] Rychter, A., Jabłońska-Barna, I., 2018. Chapter 7.4. Macrozoobenthos of the Vistula Lagoon. In: Bolałek, J. (Ed.), The Vistula Lagoon at the Beginning of the 21st Century. PWN, Warsaw (in press, in Polish).
  • [80] Sandstrom, A., Karas, P., 2002. Effects of eutrophication on young-of- the-year freshwater fish communities in coastal areas of the Baltic. Environ. Biol. Fish. 63 (1), 89-101, http://dx.doi.org/10.1023/A:1013828304074.
  • [81] Sayer, C. D., Davidson, T. A., Jones, J. I., 2010. Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton? Freshw. Biol. 55 (3), 500-513, http://dx.doi.org/10.1111/j.1365-2427.2009.02365.x.
  • [82] Sayer, C. D., Hoare, D. J., Simpson, G. L., Henderson, A. C. G., Liptrot, E. R., Jackon, M. J., Appleby, P. G., Boyle, J. F., Jones, J. I., Waldock, M. J., 2006. TBT scauses regime shift in shallow lakes. Environ. Sci. Technol. 40 (17), 5269-5275, http://dx.doi.org/10.1021/es060161o.
  • [83] Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., Walker, B., 2001. Catastrophic shifts in ecosystems. Nature 413 (6856), 591-596, http://dx.doi.org/10.1038/35098000.
  • [84] Scheffer, M., Carpenter, S. R., 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18 (12), 648-656, http://dx.doi.org/10.1016/j.tree.2003.09.002.
  • [85] Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., Jeppesen, E., 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8 (8), 275-279, http://dx.doi.org/10.1016/0169-5347(93)90254-M.
  • [86] Shaffer, G. P., Day, J. W., Mack, S., Kemp, G. P., van Heerden, I., Poirrier, M. A., Westernphal, K. A., FitzGerald, D., Milanes, A., Morris, C. A., Bea, R., Penland, P. S., 2009. The MRGO navigation project: a massive human-induced environmental, economic, and storm disaster. J. Coast. Res. 54 (SI), 206-224, http://dx.doi.org/10.2112/Si54-004.1.
  • [87] Sieben, K., Rippen, A. D., Eriksson, B. K., 2011. Cascading effects from predator removal depend on resource availability in a benthic food web. Mar. Biol. 158 (2), 391-400, http://dx.doi.org/10.1007/s00227-010-1567-5.
  • [88] Sondergaard, M., Kristensen, P., Jeppesen, E., 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia 228 (1), 91-99, http://dx.doi.org/10.1007/BF00006480.
  • [89] Stempniewicz, L., Martyniak, A., Borowski, W., Goc, M., 2003. Fish stocks, commercial fishing and cormorant predation in the Vistula Lagoon, Poland. In: Cowx, I. G. (Ed.), Interactions Between Fish and Birds, Implications for Management. Blackwell Sci. Ltd., Oxford, 51-64.
  • [90] Szarejko, D., 1955. The Vistula Lagoon vegetation. Rep. Sea Fish. Inst. Gdynia 8, 235-254, (in Polish).
  • [91] Szarejko-Łukasiewicz, D., 1959. Hydrographic investigations of the Firth of Vistula in 1953-1954. Rep. Sea Fish. Inst. Gdynia 10/A, 215-228, (in Polish).
  • [92] Tackx, M. L. M., Herman, P. J. M., Gasparini, S., Irigoien, X., Billiones, R., Daro, M. H., 2003. Selective feeding of Eurytemora affinis (Copepoda, Calanoida) in temperate estuaries: model and field observations. Estuar. Coast. Shelf Sci. 56 (2), 305-311, http://dx.doi.org/10.1016/s0272-7714(02)00182-8.
  • [93] Tatrai, I., Olah, J., Paulovits, G., Matyas, K., Kawiecka, B. J., Jozsa, V., Pekar, F., 1997. Biomass dependent interactions in pond ecosystems: responses of lower trophic levels to fish manipulations. Hydrobiologia 345 (2-3), 117-129, http://dx.doi.org/10.1023/A:1002919305978.
  • [94] Underwood, G. J. C., 1991. Growth enhancement of the macrophyte Ceratophyllum demersum in the presence of the snail Planorbis planorbis — the effect of grazing and chemical conditioning. Freshw. Biol. 26 (2), 325-334, http://dx.doi.org/10.1111/j.1365-2427.1991.tb01738.x.
  • [95] Van den Berg, M. S., Coops, H., 1999. Stoneworts: valuable for water management. RIZA report 98.055, 40 pp., https://trove.nla.gov.au/version/42922289.
  • [96] Viaroli, P., Bartoli, M., Giordani, G., Naldi, M., Orfanidis, S., Zaldivar, J. M., 2008. Community shifts, alternative stable states, biogeo-chemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquat. Conserv. 18 (S1), 105-117, http://dx.doi.org/10.1002/aqc.956.
  • [97] Warzocha, J., Szymanek, L., Witalis, B., Wodzinowski, T., 2016. The first report on the establishment and spread of the alien clam Rangia cuneata (Mactridae) in the Polish part of the Vistula Lagoon (southern Baltic). Oceanologia 58 (1), 54-58, http://dx.doi.org/10.1016/j.oceano.2015.10.001.
  • [98] Witek, Z., Zalewski, M., Wielgat-Rychert, M., 2010. Nutrient stocks and fluxes in the Vistula Lagoon at the end of the twentieth century. Pomeranian Univ., Słupsk-Gdynia, 186 pp.
  • [99] Wójcik-Fudalewska, D., Normant-Saremba, M., 2016. Long-term studies on sex and size structures of the non-native crab Eriocheir sinensis from Polish coastal waters. Mar. Biol. Res. 12 (4), 412-418, http://dx.doi.org/10.1080/17451000.2016.1148820.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecb10d3f-70cd-41bc-825c-b7088527dfdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.