PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fury of nature: evaluating the impact of hailstorm on vegetation using sentinel 2 data at Moran, India

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary objective of the study is to analyze the impact assessment of hailstorms on vegetation in the Moran region of Assam. The experiments employed sentinel-2A data of December, 2022 and January, 2023 for the computation of the NDVI, GNDVI, and MSAVI indices and their temporal dynamics. Further, LandScan gridded (1 k × 1 km) population data of 2021 have been used to portray the population affected in the study area. The result evidenced a significant decline in the mean NDVI (Normalized Difference Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), and MSAVI (Modified Soil Adjusted Vegetation Index) from the pre-hailstorm to the post-hailstorm period. The above indices declined from 0.270, 0279 and 0.416 in pre-hailstorm (24 December, 2022) period to 0.257, 0.269 and 0.410 in post-hailstorm period (3 January, 2023). Similarly, the area under healthy vegetation decreased from 72.06 and 103.55 sq km in 2022 to 60.74 and 96.35 sq km in 2023, based on GNDVI and MSAVI, respectively. The hailstorm affected the majority of villages as well as the population lying to the east of the NH-37, i.e., the Charaideo district of Assam. The Villages such Bagtali Sonowal, Demorukinar Changmai, Hatkhola gaon and Mout gaon experienced maximum damage to vegetation. Overall, 125.355 and 132.07 sq km of area considering both assessments (MSAVI & GNDVI with population) with a total population of about 131,342 are severely affected by hailstorm phenomena.
Słowa kluczowe
EN
Czasopismo
Rocznik
Strony
3025--3039
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
Bibliografia
  • 1. Ali A (2009) Comparison of strengths and weaknesses of NDVI and landscape-ecological mapping techniques for developing an integrated land use mapping approach: a case study of the Mekong delta, Vietnam. Master’s thesis, University of Twente
  • 2. Candiago S, Remondino F, De Giglio M, Dubbini M, Gattelli M (2015) Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens 7(4):4026–4047
  • 3. Chattopadhyay N, Devi SS, John G, Choudhari VR (2017) Occurrence of hail storms and strategies to minimize its effect on crops. Mausam 68(1):75–92
  • 4. De Leeuw J, Vrieling A, Shee A, Atzberger C, Hadgu KM, Biradar CM, Turvey C (2014) The potential and uptake of remote sensing in insurance: a review. Remote Sens 6(11):10888–10912
  • 5. Frampton WJ, Dash J, Watmough G, Milton EJ (2013) Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J Photogramm Remote Sens 82:83–92
  • 6. Gitelson AA, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58(3):289–298
  • 7. Gunturi P, Tippett MK (2017) Managing severe thunderstorm risk: impact of ENSO on US tornado and hail frequencies. Willis Re Inc.
  • 8. Ha T, Shen Y, Duddu H, Johnson E, Shirtliffe SJ (2022) Quantifying hail damage in crops using sentinel-2 imagery. Remote Sens 14(4):951
  • 9. Halsnæs K, Larsen MAD, Kaspersen PS (2018) Climate change risks for severe storms in developing countries in the context of poverty and inequality in Cambodia. Nat Hazards 94:261–278
  • 10. Hatfield JL, Prueger JH (2010) Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sens 2(2):562–578
  • 11. Jedlovec GJ, Nair U, Haines SL (2006) Detection of storm damage tracks with EOS data. Weather Forecast 21(3):249–267
  • 12. Mangewa LJ, Ndakidemi PA, Alward RD, Kija HK, Bukombe JK, Nasolwa ER, Munishi LK (2022) Comparative assessment of UAV and sentinel-2 NDVI and GNDVI for preliminary diagnosis of habitat conditions in Burunge wildlife management area, Tanzania. Earth 3(3):769–787
  • 13. Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VY (1999) Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Plant 106(1):135–141
  • 14. Navalgund RR, Jayaraman V, Kumar AK, Sharma T, Mathews K, Mohanty KK, Medhavy TT (1996) Remote sensing data acquisition, platforms and sensor requirements. J Indian Soc Remote Sens 24:207–237
  • 15. Prabhakar M, Gopinath KA, Reddy AGK, Thirupathi M, Rao CS (2019) Mapping hailstorm damaged crop area using multispectral satellite data. Egypt J Remote Sens Space Sci 22(1):73–79
  • 16. Press Trust of India (2022) Hailstorm in parts of Assam damages over 4400 houses. https://www.eastmojo.com/assam/2022/12/28/hailstorm-in-parts-of-assam-damages-over-4400-houses/#bypass-sw
  • 17. Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sens Environ 48(2):119–126
  • 18. Rao VUM, Rao BB, Sikka AK, Rao AS, Singh R, Maheswari M (2014) Hailstorm Threat to Indian Agriculture: A Historial Perspective and Future Strategies
  • 19. Rouse Jr, JW, Haas RH, Deering DW, Schell JA, Harlan JC (1974) Monitoring the vernal advancement and retro-gradation (green wave effect) of natural vegetation (No. E75-10354)
  • 20. Roy PS, Dwivedi RS, Vijayan D (2010) Remote sensing applications. NRSC/ISRO, Hyderabad, India (ISBN 978- 81-909460-0-1)
  • 21. Sangomla A (2022) Unexpected ‘snow’ covering Assam town hail deposits: experts, unexpected ‘snow’ covering Assam town hail deposits: experts (downtoearth.org.in)
  • 22. Sarvia F, De Petris S, Borgogno-Mondino E (2020) A methodological proposal to support estimation of damages from hailstorms based on copernicus sentinel 2 data times series. In: Computational science and its applications–ICCSA 2020: 20th international conference, Cagliari, Italy, 1–4 July 2020, Proceedings, Part IV 20. Springer International Publishing, pp 737–751
  • 23. Sawant S, Mohite J, Sakkan M, Pappula S (2019) Near real time crop loss estimation using remote sensing observations. In: 2019 8th international conference on agro-geoinformatics (Agro-Geoinformatics). IEEE, pp 1–5
  • 24. Seneviratne S, Nicholls N, Easterling D, Goodess C, Kanae S, Kossin J, Zwiers FW (2012) Changes in climate extremes and their impacts on the natural physical environment
  • 25. Sosa L, Justel A, Molina Í (2021) Detection of crop hail damage with a machine learning algorithm using time series of remote sensing data. Agronomy 11(10):2078
  • 26. Wang E, Bertis BL, Jimmy RW, Yu Y (2012) Simulation of hail effects on crop yield losses for corn-belt states in USA. Trans Chin Soc Agric Eng 28(21):177–185
  • 27. Wu W (2014) The generalized difference vegetation index (GDVI) for dryland characterization. Remote Sens 6(2):1211–1233
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecabb57e-79c6-430a-9665-44f85138b5d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.