PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexible function block for industrial applications of active disturbance rejection controller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the PLC-based (Programmable Logic Controller) industrial implementation in the form of the general-purpose function block for ADRC (Active Disturbance Rejection Controller) is presented. The details of practical aspects are discussed because their reliable implementation is not trivial for higher order ADRC. Additional important novelties discussed in the paper are the impact of the derivative backoff and the method that significantly simplifies tuning of higher order ADRC by avoiding the usual trial and error procedure. The results of the practical validation of the suggested concepts complete the paper and show the potential industrial applicability of ADRC.
Rocznik
Strony
379--400
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, ul. Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, ul. Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, ul. Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, ul. Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, ul. Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, ul. Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
  • [1] K. J. Aström and T. Hägglund: The future of PID control, Control Engineering Practice, 9(14), (2001), 1163-1175.
  • [2] J. Czeczot: On possibilities of the practical implementation of balancebased adaptive control methodology, Control and Cybernetics, 36(4), (2007) 967-984.
  • [3] H. Fallahsohi, C. Changenet, S. Place, C. Ligeret and X. Linshi: Predictive functional control of an expansion valve for minimizing the superheat of an evaporator, Int. Journal of Refrigeration, 33, (2010), 409-18.
  • [4] Z. Gao, Y. Huang and J. Han: An alternative paradigm for control system design, Proc. of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228), 5 (2001), 4578-4585.
  • [5] Z. Gao: Scaling and bandwidth-parametrization based controller tuning, Proc. of American Control Conference, 3 (2003), 4989-4996.
  • [6] Z. Gao: Active Disturbance Rejection Control: A paradigm shift in feedback control system design, Proc. of American Control Conference, ACC, (2006), 2399-2405.
  • [7] Z. Gao: On the centrality of disturbance rejection in automatic control, ISA Transactions, 53 (2013), 850-857.
  • [8] J. Han: From PID to Active Disturbance Rejection Control, IEEE Transaction on Industrial Electronics, 56 (2009), 900-906.
  • [9] Harjunkoski, R. Nyström and A. Horch: Integration of scheduling and control - Theory or practice?, Computers and Chemical Engineering, 33 (2009), 1909-1918.
  • [10] G. Herbst: A simulative study on Active Disturbance Rejection Control (ADRC) as a control tool for practitioners, Electronics, 2 (2013), 246-279.
  • [11] G. Herbst: Practical Active Disturbance Rejection Control: Bumpless Transfer, Rate Limitation, and Incremental Algorithm, IEEE Trans. on Industrial Electronics, 63(3), (2016), 1754-1762.
  • [12] Y. Huang and W. Xue: Active disturbance rejection control: Methodology and theoretical analysis, ISA Transactions, 53(4), (2014), 963-976.
  • [13] T. Klopot, J. Czeczot and W. Klopot: Flexible function block for PLC-based implementation of the balance-based adaptive controller, Proc. of 2012 AMERICAN CONTROL CONFERENCE (ACC) Book Series: Proceedings of the American Control Conference (2012), 6467-6472.
  • [14] T. Klopot, K. Stebel, J. Czeczot and P. Laszczyk: Function block practical implementation of Balance-Based Adaptive Control for pH process, Proc. of 39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), IEEE Industrial Electronics Society (2013), 3549-3554.
  • [15] T. Klopot, P. Laszczyk, K. Stebel and J. Czeczot: Flexible function block implementation of the balance-based adaptive controller as the potential alternative for PID-based industrial applications, Trans. of the Institute of Measurement and Control, 36(10), (2014), 1098-1113.
  • [16] P. Laszczyk: Programmable LabView and LabWindows/CVI PFC controller, Proc. of the 8th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR 2002 (2002), 1135-1138.
  • [17] R. Madoński and P. Herman: Survey on methods of increasing the efficiency of extended state disturbance observers, ISA Transactions, 56 (2015), 18-27.
  • [18] T. E. Marlin: Process Control. Designing Processes and Control System for Dynamic Performance, McGraw-Hill, New York (1995).
  • [19] R. Miklosovic, A. Radke and Z. Gao: Discrete implementation and generalization of the extended state observer, Proc. of the American Control Conference, ACC 2006 (2006), 2209-2214.
  • [20] R. C. Panda, C. C. Yu and H. P. Huang: PID tuning rules for SOPDT systems: Review and some new results, ISA Transactions, 43 (2004), 283-295.
  • [21] S. Skogestad: Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control, 11, (2003), 291-309.
  • [22] L. Sun, D. Li, K. Hu, K. Y. Lee and F. Pan: On Tuning and Practical Implementation of Active Disturbance Rejection Controller: A Case Study from a Regenerative Heater in a 1000 MW Power, Plant. Ind. Eng. Chem. Res., 55(23), (2016), 6686-6695.
  • [23] A. Theorin and T. Hägglund: Derivative backoff: The other saturation problem for PID controllers. Journal of Process Control, 33, (2015), 155-160.
  • [24] G. Valencia-Palmo and J. A. Rossiter: Programmable logic controller implementation of an autotuned predictive control based on minimal plant information, ISA Transactions, 50 (2011), 92-100.
  • [25] G. Valencia-Palmo and J. A. Rossiter: Efficient suboptimal parametric solutions to predictive control for PLC applications, Control Engineering Practice, 19 (2011), 732-743.
  • [26] C. Zhao and D. Li: Control design for the SISO system with the unknown order and the unknown relative degree, ISA Transactions, 53(4) (2014), 858-872.
Uwagi
EN
1. This work was supported by Polish Ministry of Science and Higher Education under grants: BKMUiUA’18 (P. Nowak and M. Fratczak) and BK-UiUA (K. Stebel, T. Klopot, J. Czeczot and P. Laszczyk). Calculations were done with the use of GeCONiI infrastructure (PO IG 02.03.01-24-099).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eca96c4c-8b75-45d0-8eff-d59e03c69b61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.