PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of thermal conductivity property of plasmonic nanofluids based on gold nanorods prepared by seed-mediated growth method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, nanofluids were prepared based on gold nanorods in basic fluid, water, by single-stage chemical reduction and in different volume fractions and the used gold nanorods were synthesized by seed-mediated growth method in different dimensional ratios. The properties of the prepared nanoparticles, including crystalline size, aspect ratio, surface properties, nanoparticle purity, shape and morphology of nanostructures were investigated using x-ray diffraction, UV-vis spectroscopy, FT-IR, and transmitted electron microscopy. The effect of changing parameters of Nano rod dimensions, changes in Nano rod volume fraction in water and also the effect of temperature on the nanofluid thermal conductivity coefficient were investigated using transient hot wire method. The results showed that reducing the aspect ratio, increasing the volume fraction and increasing the temperature increase the thermal conductivity. In fact, results show that an increase in the nanorods aspect ratio with a constant volume fraction of 1:50 of gold in water nanorod and at room temperature leads to a decrease in the thermal conductivity of the nanofluid. Also, increasing the two parameters of volume fraction and temperature significantly increases the thermal conductivity coefficient.
Rocznik
Tom
Strony
119--133
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • Nanochemical Engineering Department Institute of Nanoscience and Nanotechnology University of Kashan, Iran
  • MacDiarmid Institute for Advanced Materials and Nanotechnology School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
  • Nanochemical Engineering Department Institute of Nanoscience and Nanotechnology University of Kashan, Iran
  • Chemical Engineering Department Faculty of Engineering University of Kashan, Iran
autor
  • MacDiarmid Institute for Advanced Materials and Nanotechnology School of Chemical and Physical Sciences Victoria University of Wellington, New Zealand
  • Riddet Institute Massey University, New Zealand
Bibliografia
  • Bohren C.F., Huffman D.R. 2007. Absorption and Scattering of Light by Small Particle. WILEY-VCH, Hoboken, New Jersey, USA.
  • Burda C., Chen X., Narayanan R., El-Sayed M.A. 2005. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 105(4): 1025-1102.
  • Choi S.U.S., Eastman J.A. 1995. Enhancing thermal conductivity of fluids with nanoparticles. American Society of Mechanical Engineers (ASME), 66: 99-105.
  • Chopkar M., Sudarshan S., Das P.K., Manna I. 2008. Effect of Particle Size on Thermal Conductivity of Nanofluid. Metallurgical and Materials Transactions A, 39(7): 1535-1542.
  • Decagon, USA; http://issuu.com//decaweb/docs/kd2man.
  • Draine B.T., Flatau P.J. 1994. Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America, 11(4): 1491–1499.
  • Eastman J.A., Choi S.U.S., Li S., Yu W., Thompson L.J. 2001. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6): 718-720.
  • Gentili D., Ori G., Franchini M.C. 2009. Double phase transfer of gold nanorods for surface functionalization and entrapment into PEG-based nanocarriers. Chemical Communications, 39: 5874-5876.
  • Govorov A.O., Zhang W., Skeini T., Richardson H., Lee J., Kotov N.A. 2006. Gold nanoparticle ensembles asheaters and actuators: melting and collective plasmon resonances. Nanoscale Research Letters, 1(1): 84–90.
  • Hutter E., Fendler J.H. 2004. Exploitation of localized surface plasmon resonance. Advanced Materials, 16(19): 1685–1706.
  • Jain P.K., Lee K.S., El-Sayed I.H., El-Sayed M.A. 2006. Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry, 110(14): 7238–7248.
  • Jain S., Hirst D.G., O’sullivan J.M. 2012. Gold nanoparticles as novel agents for cancer therapy. The British Journal of Radiology, 85(1010): 101-113.
  • Jana N.R., Gearheart L., Murphy C.J. 2001. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-Like Gold Nanoparticles Using a Surfactant Template. Advanced Materials, 13(18): 1389−1393.
  • Jana N.R., Gearheart L., Murphy C.J. 2001. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. The Journal of Physical Chemistry, 105(19): 4065−4067.
  • Jha N., Ramprabhu S. 2009. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids. Journal of Applied Physics, 106(8): 084317.
  • Jia Y., Sun T.Y., Wang J.H., Huang H., Li P.H., Yu X.F., Chu P.K. 2014. Synthesis of hollow rare-earth compound nanoparticles by a universal sacrificial template method. CrystEngComm, 16(27) 6141–6148.
  • Karthikeyan N.R., Philip J., Raj B. 2008. Effect of clustering on the thermal conductivity of nanofluids. Materials Chemistry and Physics, 109(1): 50-55.
  • Khullar V., Tyagi H., Phelan P.E., Otanicar T.P., Singh H., Taylor R.A. 2012. Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector. Journal of Nanotechnology in Engineering and Medicine, 3(3): 259-267.
  • Lee B.J., Park K., Walsh T., Xu L. 2012. Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption. Journal of Solar Energy Engineering, 134(2): 021009.
  • Lei W., Mochalin V., Liu D., Qin S., Gogotsi Y., Chen Y. 2015. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nature Communications, 6(1): 8849.
  • Li Q., Xuan Y., Wang J. 2005. Experimental investigations on transport properties of magnetic fluids. Experimental Thermal and Fluid Science, 30(2): 109-116.
  • Li Y., Zhou J., Tung S., Schneider E., Xi S. 2009. A review on development of nanofluid preparation and characterization. Powder Technology, 196(2): 89-101.
  • Link S., El-Sayed M.A. 1999. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry, 103(40): 8410–8426.
  • Lo C.H., Tsung T.T., Lin H.M. 2007. Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS). Journal of Alloys and Compounds, 434-435: 659-662.
  • Mohammadi A., Kaminski F., Sandoghdar V., Agio M. 2009. Spheroidal nanoparticles as nanoantennas for fluorescence enhancement. International Journal of Nanotechnology, 6(10-11): 902–914.
  • Murshed S.M.S., Leong K.C., Yang C. 2008. Thermophysical and electrokinetic properties of nanofluids – a critical review. Applied Thermal Engineering, 28(17-18): 2109-2125.
  • Nikoobakht B., El-Sayed M.A. 2003. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials, 15(10): 1957−1962.
  • Palik E. 1998. Handbook of optical constants of solids. 1st Edition. Academic Press, London.
  • Patel H.E., Sundararajan T., Das S.K. 2008. A cell model approach for thermal conductivity of nanofluids. Journal of Nanoparticle Research, 10(1): 87–97.
  • Paul G., Philip J., Raj B., Kumar-Das P., Manna I. 2011. Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process. International Journal of Heat and Mass Transfer, 54(15-16): 3783-3788.
  • Prasher R., Bhattacharya P., Phelan P.E. 2006. Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. Journal of Heat Transfer, 128(6): 588-595.
  • Raether H. 1988. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag.
  • Richardson H.H., Hickman Z.N., Govorov A.O., Thomas A.C., Zhang W., Kordesch M.E. 2006. Thermooptical Properties of Gold Nanoparticles Embedded in Ice: Characterization of Heat Generation and Melting. Nano Letters, 6(4): 783–788.
  • Sani E., Barison S., Pagura C., Mercatelli L., Sansoni P., Fontani D., Jafrancesco D., Francini F. 2010. Carbon nanohorns-based nanofluids as direct sunlight absorbers. Optics Express, 18(5): 5179–5787.
  • Sani E., Mercatelli L., Barison S., Pagura C., Agresti F., Colla L., Sansoni P. 2011. Potential of carbon nanohorn-based suspensions for solar thermal collectors. Solar Energy Materials and Solar Cells, 95(11): 2994–3000.
  • Suresh S., Venkitaraj K.P., Selvakumar P., Chandrasekar M. 2011. Synthesis of Al2O3–Cu/ water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388(1-3): 41-48.
  • Taha-Tijerina J., Narayanan T.N., Gao G., Rohde M., Tsentalovich D.A., Pasquali M., Ajayan P.M. 2012. Electrically Insulating Thermal Nano-Oils Using 2D Fillers. ACS Nano, 6(2): 1214-1220.
  • Takahashi H., Niidome T., Kawano T., Yamada S., Niidome Y. 2008. Surface modification of gold nanorods using layer-by-layer technique for cellular uptake. Journal of Nanoparticle Research, 10(1): 221-228.
  • Taylor R.A., Otanicar T.P., Herukerrupu Y., Bremond F., Rosengarten G., Hawkes E.R., Jian X., Coulombe S. 2013. Feasibility of nanofluid-based optical filters. Applied Optics, 52(7): 1413–1422.
  • Tillman P., Hill J.M. 2006. A new model for thermal conductivity in nanofluids. Proceeding of 2006 International Conference on Nanoscience and Nanotechnology. Eds. C. Jagadish, G. Lu. Canberra, Australia, p. 673-676.
  • Tseng K.H., Lee H.L., Liao C.Y., Chen K.C., Lin H.S. 2013. Rapid and Efficient Synthesis of Silver Nanofluid Using Electrical Discharge Machining. Journal of Nanomaterials, 2013: 6-12.
  • Tyagi H., Phelan P., Prasher R. 2009. Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector. Journal of Solar Energy Engineering, 131(4): 041004.
  • Wang L.P., Lee B.J., Wang X.J., Zhang Z.M. 2009. Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities. International Journal of Heat and Mass Transfer, 52(13-14): 3024–3031.
  • Wang Q., Fu F. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3): 407-418.
  • Xie H., Fujii M., Zhang X. 2005. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. International Journal of Heat and Mass Transfer, 48(14): 2926-2932.
  • Yan K.Y., Xue Q.Z., Zheng Q.B., Hao L.Z. 2007. The interface effect of the effective electrical conductivity of carbon nanotube composites. Nanotechnology, 18(25): 255705.
  • Yu W., Choi S.U.S. 2003. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model. Journal of Nanoparticle Research, 5(1-2): 167-171.
  • Yu W., Choi S.U.S. 2004. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton – Crosser model. Journal of Nanoparticle Research, 6(4): 355-361.
  • Yu W., Xie H. 2012. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. Journal of Nanomaterials, 2012: 17-34.
  • Zayats A.V., Smolyaninov I.I., Maradudin A.A. 2005. Nano-optics of surface plasmon polaritons. Physics Reports, 408(3-4): 131–314.
  • Zhang F., Shi Y.F., Sun X.H., Zhao D.Y., Stucky G.D. 2009. Formation of hollow upconversion rare-earth fluoride nanospheres: Nanoscale Kirkendall effect during ion exchange. Chemistry of Materials, 21(21): 5237–5243.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec9d38ed-1e22-4b77-9187-1c04499d5112
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.