
On In-System Programming
of Non-volatile Memories

Anton Tsertov, Sergei Devadze, Artur Jutman, and Artjom Jasnetski

Abstract—With the continuous growth of capacity of non-
volatile memories (NVM) in-system programming (ISP) has
become the most time-consuming step in post-assembly phase of
board manufacturing. This paper presents a method to assess
ISP solutions for on-chip and on-board NVMs. The major
contribution of the approach is the formal basis for comparison of
state-of-the-art ISP solutions. The effective comparison pin-points
the time losses, that can be eliminated by the use of multiple
page buffers. The technique has proven to achieve exceptionally
short programming time, which is close to the operational speed
limit of modern NVMs. The method is based on the ubiquitous
JTAG access bus which makes it applicable for the most board
manufacturing strategies despite a slow nature of JTAG bus.

Index Terms—in-system programming, processor-centric
board, JTAG, non-volatile memory.

I. INTRODUCTION

THE widely adopted DfT structures defined in IEEE

1149.1 standard [1] and complemented in [2] are heav-

ily used for ISP and memory test, besides traditional post-

assembly tests (Boundary-Scan tests). Despite of ubiquitous

presence of boundary-scan (BS) [1] structures in modern

electronic systems and components, the application of BS is

often considered limited due to the low operation frequency.

Typically BS clock (TCK) frequency is in range from 1 MHz

to 50 MHz, whereas actual speed of data transfer is much

lower due to the overhead data (JTAG instructions and UUT

protocol) that accompanies each test pattern. Here and later

the term BS will be used to stress that IEEE 1149.1 structures

are used in isolation from the internal functionality of the chip.

The term JTAG denotes the test infrastructures defined in IEEE

1149.1 standard.

Traditionally, the ISP is considered to be the final phase of

BS test session and builds the foundation for the following

functional tests [3]. The fundamental JTAG-based ISP solu-

tions are proposed in [4], [5] and [6], that describe processor-

controlled test and processor-centric board test (PCBT). These

methods are based on the use of functionality of micro-

processor (uP) or microcontroller (uC) to access peripheral

components outside the uP or uC at normal operational speed

of the board. The attractiveness of PCBT-based solutions

are very high due to the usage of existing DfT structures

without any modifications. Later in this paper, the formal

characterization of ISP will be given in the terms from JTAG

and PCBT methodology.

A. Tsertov is with the Department of Computer Engineering, Tallinn
University of Technology, Tallinn, Estonia (e-mail: anton.tsertov@ttu.ee)

S. Devadze, A. Jutman, A. Jasnetski are with Testonica Lab OU, Tallinn,
Estonia (e-mails: {sergey, artur, artjom}@testonica.com)

The ISP of NVMs with the use of PCBT methodology

has proven to speed up the existing JTAG-based solutions

[5] [7]. However, in the near future the size of the program

images that are stored to the NVMs is expected to grow,

mainly due to the grow of complexity of the available hardware

functionality. Inevitably the speed up in ISP time introduced

by PCBT methodology is not sufficient and the industry is

looking for methodology that will run ISP at the operational

speed limit of contemporary and future NVMs. State-of-the-art

JTAG and UART-based solutions are limited by the speed of

the data transfer link. In this paper we derive the technique that

mitigates time-losses that are common to most ISP approaches.

A. Problem statement and paper contribution

After the bare PCB is populated with components it needs

to be tested for manufacturing defects. Typically, the boundary

scan tests are used to screen out boards with static structural

defects. After the screening procedure the ”healthy” boards

reside in the fixture for subsequent ISP and functional testing,

e.g. using boot-loader image. In most cases, it is considered

beneficial to program the NVMs with the same tester hardware

that is used for verification and test of other components on

the printed circuit board assembly (PCBA) under test. The

PCBT methodology helps to reduce the programming time of

flash memory from hours, as in case with BS, to minutes and

even less. Nevertheless, the actual ISP time (in case of PCBT)

heavily depends on the architecture of the debug interface of

the uP, on the instruction set of the uP, on the performance

of the flash memory controller inside the uP SoC and on the

performance of the flash memory itself. The latter is discussed

in details in the last section of this paper.

The PCBT-based ISP procedure of NVMs is formally char-

acterized in Section II. Section III studies the drawbacks of the

state-of-the-art ISP solution and proposes countermeasures to

solve the named issues. The solution in Section IV allows in

most cases to perform in-system programming of on-chip or

on-board non-volatile memories at maximum speed. Whereas,

maximum speed means that the bottleneck is not in the data

transfer channel (JTAG), but in the capability of the memory

itself to program the supplied data faster. The formal basis

from Section II and III is used in the last section to asses and

compare the experimental results of different test-cases (ISP

of on-chip and on-board NVM).

II. PROCESSOR-CENTRIC BOARD TEST

The processor-centric board test [6] is a collective term

for the post-manufacturing tests for processor-centric boards.

These tests target the defects related to the last stages of the



board manufacturing process and also the first stages of the

post-manufacturing product life (e.g. in-system programming

(ISP), infant mortality diagnosis). The uP plays a role of on-

board tester, that listens to commands from external test equip-

ment and in response applies tests to other PCBA components.

The next section presents a study on how ISP can benefit

from the PCBT methodology.

A. Test application

Test path initialization and configuration belong to the test
access functionality of the PCBT program. The rest of the

PCBT program functionality is a part of the test application,

which may be developed in accordance to online1 or offline

test application modes [8].

In case of the the offline (autonomous) mode, the complete

test program (test vectors and expected values) is translated

into the set of uP instructions and loaded as an ordinary

program into memory inside the uP. The program execution

inside the uP is started by the external tester. After test

program execution is finished the result (PASS or FAIL for

complete test) will be stored in the on-chip memory of the uP.

It is retrieved through the debug interface and reported to the

external tester for further evaluation and diagnosis.

The offline mode is fully independent and does not suppose

continuous interaction with an external tester. This mode needs

available on-chip memory to store test data. Obviously, this

mode is not suitable for ISP of large images unless there is

enough memory available (e.g. on-chip or on-board volatile

memory) to hold the whole image to be programmed into on-

board non-volatile memory.

The key difference between the online and offline modes is

that in the online mode commands are executed under the

control of external tester. In online mode the flash image

is transferred through the test access path word by word

directly to the non-volatile on-board memory. This implies

also transferring the commands for NVM, which significantly

reduces the test data throughput of test application.

The formula (I) is proposed for ISP time tISP calculation

for the online mode of test application.

(I) : tISP = tWD + dtID + tB
d

b
+ tR

d

b

• d - size in words of the flash image

• b - size in words of the flash page. Traditionally the data

in NVMs is handled page-wise.

• tWD - time to transfer over JTAG bus (shift in) the flash

image

tWD = d l
h , where l is a length of the shift and h is a

frequency of the test clock (TCK).

• tID - time to shift in the instructions that write a word

to any memory location

tID =
∑k

i=1
li
h , where k is the number of shifts to

emulate the write instruction from external tester on the

uP. k includes the JTAG TAP instructions, debug port

instructions and uP instructions. li denotes that instruction

of every type might be different in length.

1Online mode of test application is not the same as on-line testing

• tB - programming time, required by Flash device to

program one page

tB - is a constant specified in the datasheet of the memory

• tR - time to read the word (to read status register after

programming sequence)

tR =
∑r

i=1
li
h where r is the number of shifts to emulate

the read instruction and to shift out the data to the external

tester. r includes the JTAG TAP instructions, debug port

instructions and uP instructions. li denotes that instruction

of every type might be different in length.
d
b means the number of pages to program (in case of

unaligned number of bytes the result is rounded up).

III. HYBRID ONLINE ISP MODE

In order to speed up the ISP in online mode the industry

has came up with a solution [5] [9] which we call in the

following as hybrid-online mode of test application. In Figure

1 the uP-based SoC components that are active in hybrid

mode are shown. The difference to pure online mode is in

the software that is executed by the uP. This software is

executed in accordance to the control commands from external

tester and is called monitor software. Firstly, the external tester

transfers part of the data image to the buffer, then the command

to copy data from buffer to buffer inside NVM is send to

the monitor software. The monitor software handles the data

transfer from the buffer to the page buffer inside NVM by

turn and sends write page commands to NVM. If the on-chip

memory is not available the on-board volatile memory can be

used to store the monitor software and host the intermediate

buffer for data. The ISP time calculation for hybrid-online

mode can be calculated using the proposed formula (II).

(II) : tISP = tWM + tWD + (m+ d)tID + tB
d

b
+ tEX

• m - size in words of the monitor software

• tWM - time to shift in the monitor software

tWM = m l
h , where m is size of the monitor in words,

l is a length of a word and h is a frequency of the test

clock (TCK).

• tWD - time to shift in the flash image

tWD = d l
h , where l is a length of a word and h is a

frequency of the test clock (TCK).

• tID - time to shift in instructions that write a word to the

register or location in volatile memory

tID =
∑k

i=1
li
h , where k is the number of shifts to

emulate the write instruction from external tester on the

uP. k includes the JTAG TAP instructions, debug port

instructions and uP instructions. li denotes that instruction

of every type might be different in length.

• tB - programming time per page

tB - is a constant specified in the datasheet of the memory

• tEX - time taken by monitor to copy flash image from

buffer to page buffer into flash memory. As the monitor

is executed at the actual operating speed of the uP this

time can be neglected (proven in Section V). Typically

uP clock is at least one order of magnitude faster than

TCK.



Fig. 1. Data path components in hybrid online mode of ISP

After substituting the notation of summands in formula II

with the respective expressions, formula II takes the following

form:

(III) : tISP = m

(
l

h
+

k∑
i=1

li
h

)
+ d

(
l

h
+

k∑
i=1

li
h

)
+ tB

d

b

Obviously, in order to justify the effort spent on

development of the monitor software the hybrid-online

mode has to speed up the online mode. This consideration is

expressed by the following inequality (I)>(II):

d
l

h
+d

k∑
i=1

li
h
+tB

d

b
+
d

b

r∑
i=1

li
h

> m
l

h
+d

l

h
+(m+d)

k∑
i=1

li
h
+tB

d

b

that reduces to:

(IV ) :
d

b

r∑
i=1

li
h

> m
l

h
+m

k∑
i=1

li
h

Let us evaluate the obtained expression (IV). From (IV) it

can be concluded that the time to load the monitor to volatile

memory should be shorter than the time taken by reading the

flash status after the page programming operations. In other

words, the inequality (IV) never holds if the monitor size

in words is bigger than the number of polls for flash status

(assuming that the read operation and write operation takes

the same number of shifts). Number of polls for flash status

depends on the number of flash pages to program, which has

direct relation to the size of the image to be programmed.

Hence, the hybrid-online mode (in the form it is described

here) will likely to be slower than the online mode for small

images.

IV. DOUBLE BUFFER ONLINE ISP MODE

Despite the hybrid-online mode in general gives shorter ISP

time, there is still a place for optimizations. In figure 2 is

shown the flow of time components in hybrid-online mode of

Fig. 2. Time flow in hybrid online mode of ISP

ISP. It should be stressed that in the ideal ISP solution the

bottleneck is in the time taken by the NVM itself to program

the page (tB). In other words, in ideal solution ISP is as fast

as the flash can allow. Hence, the timeout shown in Figure

2 needs to be minimized. The time that is used to program

data from volatile buffer to page buffer inside flash (”Buffer to
Page Buffer) and time tB (Page Buffer to Page) are inevitable

in any case.

In order to catch up with the time of the ideal solution

let us consider adding another buffer to the hybrid-online

mode of ISP. The idea is to use the time that flash needs to

program the data in its page buffer to the actual page (tB) for

transferring data for the next page from external tester to the

buffer in volatile memory. The data flow for double-buffered

hybrid online method is shown in Figure 4. In this case the

programming of the flash page and the data transfer via test

access path are performed in parallel. The limitation of this

approach is that the volatile memory has to be big enough to

store the monitor and two pages (Buffer1 and Buffer2) of flash

image (see Figure 3).

The formula (V) is proposed to calculate the ISP time for

the double-buffer approach. The formula (V) is derived from

(III) with assumption (VI). In (VI) is assumed that buffer

programming time is shorter than a flash page programming

time (tB), which is given in the datasheet. As it is shown

later the assumption (VI) holds in case of most on-chip and

on-board flashes unless the flash has extraordinary small page

programming time. In addition, formula (VI) bounds the speed

of communication with external tester (h) from the lower side,

when the equation is satisfied.

(V ) : tISP = m

(
l

h
+

k∑
i=1

li
h

)
+ b

(
l

h
+

k∑
i=1

li
h

)
+ tB

d

b

(V I) : b

(
l

h
+

k∑
i=1

li
h

)
≤ tB

In formula (V) is shown that ISP time (tISP ) is formed by



Fig. 3. Data path components in double-buffer hybrid online mode of ISP

Fig. 4. Time flow in double-buffer hybrid online mode of ISP

the monitor programming to volatile memory, transferring the

first page to buffer inside volatile memory (the rest of the pages

are transferred in parallel to the programming of the previous

page to flash) and the page programming time multiplied by

the number of pages to program.

The applicability of the double-buffer hybrid-online mode of

ISP in the particular test case can be evaluated using inequality

(VI). When the inequality is satisfied the overall ISP time is

limited by the flash performance, otherwise the double-buffer

based approach does not give a significant speed up and the

ISP is limited by the throughput of the test access path.

V. FROM THEORY TO PRACTICE

The efficiency of proposed methodology is studied for two

use-cases. The first use-case considers programming of the

embedded (on-chip) flash of the uC. In the second use-case

the external (on-board) flash is programmed.

For the first use-case the uC XC2361E from Infineon [10] is

used. The embedded flash memory of XC2361E is built from

pages of size 128 bytes. The typical programming time for

single page is 3ms [10]. Thus, the theoretical programming

time of 256KB is 6144ms. The experimental results presented

TABLE I
INFINEON XC2300E UP ON-CHIP FLASH ISP OF 256KB

Method Program Time (s) Throughput KB/s
Keil (UART) [11] 151,38 6,76

Keil (JTAG) [11] 14,72 17,12

PCBT [12] 12,43 20,27

PCBT (2-buff.) 7,81 32,25

Theoretical 6,144 35,714

in Table I show the difference in programming 256KB of data

into embedded non-volatile memory using toolchain from Keil

[11], PCBT approach and modified PCBT approach that is

based on the proposed double buffer technique. PCBT ap-

proaches are executed on the toolchain from Goepel Electronic

[12]. The results from Keil-based toolchain show the state-of-

the-art approach time. It should be mentioned that the actual

communication frequency is not available for that approach,

while for the PCBT the 20MHz test clock (TCK) frequency

was used.

The double buffer PCBT approach outperformed the rest of

the approaches and showed the time close to the theoretical

one. The time for experiments listed in Table I include not

only the ISP time, but also the board and uP initialization

time. Hence, the difference between theoretical estimation

and the double buffer PCBT approach represents the time

for initializing/booting the board and uP and also the time

for programming monitor software and the first page into

intermediate buffer: 7810 − 6144 = 1666(ms.). The pure

programming time for hybrid online PCBT is 12430−1666 =
10764(ms). Hence, the time for transferring 256KB of data to

intermediate buffer is 10764− 6144 = 4620(ms) and time to

transfer 1 page to that buffer is 4620/(2048−1) = 2.26(ms).
This shows that inequality VI holds, whereas the left part is

equal to 2.26ms. and the tB = 3ms as was stated previously.

For the second experiment the board with Emerald-P mi-

croprocessor and NOR flash from Numonix was selected.

Emerald-P is based on ARM Cortex-A9 core that is paired

with ADIv5 debug interface from ARM. The experimental

results for ISP of 1 MB image into on-board NOR flash and the

theoretical expectations both for hybrid online-hybrid PCBT

(ISPOH ) and two-buffer online-hybrid PCBT (ISP2BOH )

approaches are shown in Table II. The theoretical result is

based on the data from respective Numonyx manual [13] for

selected NOR flash, where the programming time is defined

as a range (min < tB < max) for selected 512 byte long

page buffer. From Table II it is seen that the experimental

result for double buffer PCBT does not fit into the theoretical

range. Which leads us to the conclusion that for the given

case the bottleneck is in the throughput of test access path.

However, there is a noticeable time improvement achieved in

PCBT conditioned by implementation of the second buffer.

In this experiment the size of the flash page and the buffer

size is 512 bytes. From data shown in Table II the overall

time to program one flash page in PCBT is tISPOH
=

(4434 − 100)/2048 = 2.12(ms), where 2048 is the number

of buffers in 1 MB. The same operation for the double buffer



PCBT takes: tISP2BOH
= (2930 − 100)/2048 = 1.38(ms).

The difference between these two approaches conforms to

tOH − t2BOH = 4434 − 2930 = 1504(ms). The same in

the formal view:

(V II) : tOH − t2BOH =

d

(
l

h
+

k∑
i=1

li
h

)
+ tB

d

b
− b

(
l

h
+

k∑
i=1

li
h

)
− tB

d

b
=

(d− b)

(
l

h
+

k∑
i=1

li
h

)

If

(V I) : b

(
l

h
+

k∑
i=1

li
h

)
≤ tB

Otherwise:

(V III) : tOH − t2BOH =

d

(
l

h
+

k∑
i=1

li
h

)
+ tB

d

b
− d

(
l

h
+

k∑
i=1

li
h

)
− tB =

tB

(
d

b
− 1

)
In order to state whether inequality VI holds or not it is

needed to calculate the exact tB value. Let us assume that

inequality VI does not hold,

then from VIII tB = 1504/(d/b − 1) = 1504/2047 =
0.73(ms).

The experiments are executed using 20MHz clock for TCK

signal (h = 20000(ms)). Thus, the inequality VI takes the

following form after substituting parameters with their values:

512

(
32

20000
+

k∑
i=1

li
h

)
≤ 0.73

after simplifying:

0.82 + 512
k∑

i=1

li
h
≤ 0.73

Which indeed leads to contradiction in inequality VI and this

was an assumption we made. Let us assume the opposite

(inequality VIII holds) to verify correctness of our previous

assumption, then:

(d− b)

(
l

h
+

k∑
i=1

li
h

)
= 1504

(1048064)

(
32

20000
+

k∑
i=1

li
h

)
= 1504

1677 + 1048064
k∑

i=1

li
h

= 1504

From where it is seen that last statement is incorrect,

because the left part is greater than the right part. Hence, the

first assumption that inequality VI does not hold is correct

and tB = 0.73(ms). Finally, time to program 1MB to the

flash equals 0.73 ∗ 2048 = 1495.04(ms), which conforms to

the range given in Table II.

The results in Table II and the computations show that

in case with a fast flash memory the ISP is limited by the

throughput of test access path. However, the addition of the

second buffer to the hybrid-online ISP mode even in case

of the fast memory allows to achieve significant speed up.

According to Figure 2 and 4 the possible improvement in ISP

time is limited. The range of possible improvement is from

0 to T1, where the upper limit is the time when flash is idle

in the hybrid-online mode (T1). The time when flash is idle

is called in this paper as timeout. The flash idle period in the

double buffer mode is denoted here as T2. It should be stressed

that the flash is not idle during the process of copying data

from buffer memory to the page buffer inside Flash. For the

rest of the paper the time taken by this process is defined as

C. In Figure 2 and 4 this time period is outlined as Buffer to
Page Buffer.

Time for programming one page of data from external tester

to the buffer memory (see Figure 2) equals to: tB + T1 + C.

The timeout in the hybrid online PCBT (T1) is caused solely

by the time needed to transfer next page data to the buffer

from external tester and this time is equal in both experiments

(ISP of on-board NOR Flash using hybrid online and double-

buffered hybrid online methods).

tB + b

(
l

h
+

k∑
i=1

li
h

)
+ C = 2.12(ms)

b

(
l

h
+

k∑
i=1

li
h

)
+ C = 1.38(ms)

Time for programming one page of data from external tester

to the buffer memory in double buffer approach (see Figure

4) equals to: tB + T2 + C = 2830/2048 = 1.38(ms), where:

tB + T2 = b

(
l

h
+

k∑
i=1

li
h

)

And T2 = 1.38 − tB − C = 0.65 − C(ms). In order to

calculate the C = 0.65 − T2 let us subtract time to program

one buffer into flash for these two approaches:

(tB + T1 + C)− (tB + T2 + C) = 2.12− 1.38 = 0.74

T1 = 0.74 + T2 = 0.74 + (0.65− C) = 1.39− C

After substituting T1 and T2 values to T1 − T2 = 0.74(ms)
we get: (1.39− C)− (0.65− C) = 0.74 we get C = 0(ms).
This means that we can neglect C value in computations due

to much less magnitude of measurement (not ms, but ns). It is

obvious that ARM Cortex-A9 based uP is capable of copying

512 bytes of data from one memory to another in nanoseconds.

The next unresolved issue questions the possibility to over-

come the bottleneck in the face of test access path. From

inequality VI it is seen that the only parameter that is not

fixed in any test case is the frequency of the TCK signal. In

presented experiments (Table II) the theoretical expectations

are not reached with the TCK frequency fixed at 20 MHz.



TABLE II
ISP TIME FOR ON-BOARD FLASH DEVICES

PCBT (ms) 2-buff. PCBT (ms)
Theoretical limit 768 - 2333 768 - 2333

Experimental data 4434 2930

Initialization 100 100

Figure 5 presents the chart that depicts dependency of the

ISP programming time of one flash page on the TCK signal

frequency. In Figure 5 in blue is shown the tB which is

constant for the given test case and the red curve is the test

access path throughput, which is a function of TCK signal

frequency (horizontal axis). In other words, Figure 5 is a

representation of inequality VI. At TCK frequency of 38

MHz the page transfer time becomes equal to page program

time (tB), thus inequality (VI) becomes satisfied. At higher

frequency values the test access path throughput is not a

bottleneck any more as the time is shorter than the tB . Thus,

execution of ISP at e.g. 40 MHz of TCK signal is excessive

to achieve the shortest possible time for the given test case.

Hence, the ISP time will hit the theoretically calculated limit

at 38 MHz.

A. Feasibility study

In order to see the feasibility of the hybrid online ISP

solution improved by doubling the buffer we conducted exper-

iments with various Flash devices. The results are presented in

Table III. These devices were selected to study the influence

of different technologies (NAND and NOR), interfaces (serial

and parallel) and internal memory organisation (e.g. page

size) on the overall ISP time. To make the comparison fare

the test access path is similar in all cases. The test access

path cannot be identical in all cases due to the different

implementation of memory controllers for NOR, SPI NOR and

NAND Flash devices. However, the rest of the test access path

includes uPs with identical debug ports and core architecture.

These experiments are executed on the uP that implement

ARMv7 [14] architecture (ARM Cortex-A9 cores) and ARM

ADIv5 [15] debug interface.

The experiment with NAND Flash was conducted on the

PCBA equipped with MT29T Micron [16] device and Zynq

uP from Xilinx [17]. As the representative of the serial NOR

Fig. 5. ISP Time as a function of TCK frequency

Flash the device from Numonyx (N25Q128 [18]) is selected,

which is paired again with Zynq uP. For the NOR Flash the

data from previous experiment (see Table II) is reused.

Table III outlines the differences between various Flash

devices by comparing page sizes and page programming time

(tB). In the leftmost two columns of Table III we present

the measurement results of running hybrid online (tOH ) and

improved hybrid online (t2BOH ) ISP solutions on the physical

boards using test equipment from Goepel Electronic GMBH.

The obtained values are used to calculate the actual time for

programming a page of data, which is shown in the third

column (tB). The computation algorithm was explained in

the previous example. The actual tB is not given in the

datasheets and it varies in accordance to the number of factors

(e.g. temperature, supply voltage). However, it is essential in

calculations of theoretically minimal ISP time under given

conditions. This theoretical time value is used to assess the

test access path throughput value of the ISP solution obtained

in the same conditions.

Graphically the feasibility of ISP solution is presented in

Figure 6. Figure 6 shows the improvement in test access path

throughput that can be achieved by increasing the TCK signal

frequency. In the same figure is also plotted the programming

time of 1 MB data for various flash devices. When the

throughput curve crosses the tB line for 1MB it shows that the

memory itself becomes a bottleneck of ISP solution. The latter

shows that further increase of TCK frequency will not speed

up the ISP time for particular memory. However, this figure

also shows that for NAND memory the reasonable increase

in TCK frequency is incapable to sufficiently increase the test

access path throughput to reach the theoretical minimal ISP

time.

VI. CONCLUSION

The contribution of this paper is twofold. The first one

is the formal characterization of in-system programming of

non-volatile on-chip or on-board memories. This formal ba-

sis allows to point out time losses in ISP solution and to

assess the efficiency of various ISP approaches. The second

contribution is the novel ISP technique that has proven to

hasten programming operation to the limit that is set by the

NVM performance. The proposed technique is an extension of

Fig. 6. Test access path throughput comparison with programming time of
various Flash devices



TABLE III
ISP TIME FOR VARIOUS ON-BOARD FLASH DEVICES

FLASH Device Page Size (bytes) tB (ms.) tB (ms.) for 1 MB tOH (ms.) for 1 MB t2BOH (ms.) for 1 MB
NOR - M29EW Numonyx 512 0,73 1505 4434 2930

QSPI NOR - N25Q128 Numonyx 256 0,50 2050 5022 2973

NAND - MT29T Micron 2048 + OOB 0,39 200 3097 2897

the hybrid-online ISP mode with the double buffer concept.

Even in case of exceptionally fast NVM device the proposed

technique is capable to guarantee the significant speed up in

comparison to the state-of-the-art solutions.

It is foreseen that the tendency of enlargement of the storage

capacity of NVMs continues, thus the significance of proposed

ISP technique is remarkable.

ACKNOWLEDGMENT

This work has been partially supported by Estonian Science

Foundation (grant 9423), Archimedes funded ICT program

project FUSETEST, as well as by Enterprise Estonia project

ELIKO and Estonian IT Foundation (EITSA).

REFERENCES

[1] IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE
Std. 1149.1-2001, 2001.

[2] IEEE Standard for Reduced-Pin and Enhanced-Functionality Test Ac-
cess Port and Boundary-Scan Architecture, IEEE Std. 1149.7-2009,
2010.

[3] P. Maxwell, I. Hartanto, and L. Bentz, “Comparing functional and
structural tests,” in Proc. of International Test Conference, Atlantic City,
NJ , USA, 2000, pp. 403 – 407.

[4] J. Webster, B. Fenton, D. Stringer, and B. Bennetts, “On the synergy
of boundary scan and emulation board test: a case study,” in Proc. of
Board Test Workshop, Charlotte, USA, 2003, p. 10.

[5] (2010) High speed programming of non-volatile memories using the
xjtag development system. White Paper. XJTAG. [Online]. Available:
http://www.xjtag.com/

[6] A. Tsertov, R. Ubar, A. Jutman, and S. Devadze, “Automatic soc level
test path synthesis based on partial functional models,” in Proc. of 20th
Asian Test Symposium (ATS), New Delhi, India, 2011, pp. 532 – 538.

[7] (2009) Combining boundary scan and jtag emulation for advanced
structural test and diagnostics. White Paper. T. Wenzel and H. Ehrenberg.
[Online]. Available: http://tmworld.resourcecenteronline.com

[8] S.Devadze, A.Jutman, A.Tsertov, M.Instenberg, and R.Ubar,
“Microprocessor-based system test using debug interface,” in Proc. of
26th IEEE NORCHIP Conference, Tallinn, Estonia, Nov. 2008, pp.
98–101.

[9] T.Wenzel and H.Ehrenberg. (2009) Combining boundary scan and
JTAG emulation for advanced structural test and diagnostics: White
paper. Goepel Electronic GmbH. Jena, Germany. [Online]. Available:
http://tmworld.resourcecenteronline.com

[10] XC236xE Data Sheet, V1.2 2012-06, Infineon Technologies AG, 2012.
[11] (2009) Getting started. creating applications with uvision4. Manual.

Keil, Tools by ARM, and ARM Ltd. [Online]. Available:
http://www.keil.com/product/brochures/uv4.pdf

[12] (2012) Jtag/boundary scan is probably the most in-
genious test process. Web Article. Goepel Electronic
Ltd. [Online]. Available: http://www.goepel.com/en/jtag-boundary-
scan/boundary-scan-instruments.html

[13] M29EW Datasheet, 208045-10, Numonyx Axcell, 2010.
[14] ARM Architecture Reference Manual - ARMv7-A and ARMv7-R edition,

ARM DDI 0406C, ARM Limited, 2011.
[15] ARM Debug Interface v5 Architecture Specification, ARM IHI 0031A,

ARM Limited, 2006.
[16] MT29F2 Datasheet, m79m 2gb nand, Micron, 2010.
[17] Zynq-7000 EPP Technical Reference Manual, UG585 (v1.1), Xilinx,

2012.
[18] N25Q128 1.8V Datasheet, Rev 1.0, Numonyx Axcell, 2010.

Anton Tsertov received his M.Sc. and Ph.D. de-
grees in computer engineering from Tallinn Uni-
versity of Technology, Estonia in 2007 and 2012
respectively and currently holds the position of re-
searcher in Tallinn University of Technology. His
research interests include such topics as system
and board level test, high-level system modelling,
microprocessor functional and structural test.

Sergei Devadze has received his Ph.D. degree in
computer engineering from Tallinn University of
Technology, Estonia in 2009 and currently holds the
position of researcher in this university. His research
interests embrace such topics as usage of chip-
embedded instrumentation for system test and ISP,
fault tolerance and fault management architectures of
digital systems, extended structural board test. He is
a co-author of over 50 scientific papers in the field
of digital design and test published in international
journals and refereed conference proceedings.

Artur Jutman received his M.Sc. and Ph.D. degrees
in computer engineering from TU Tallinn, Estonia
in 1999 and 2004 respectively. His research inter-
ests include: embedded instrumentation for board
and system test, system modeling, DFT and self-
test (adding up to over 120 scientific publications).
Artur Jutman has been a visiting researcher and
invited lecturer in several European universities in
Germany, Sweden, Poland, and Portugal. Dr. Jutman
is a council member of the European Association for
Education in Electrical and Information Engineering

(EAEEIE) and a technology development center ELIKO. He is also a member
of the executive committee of the Nordic Test Forum (NTF) society. He is a
managing director of Testonica Lab company, which main focus lies in the
field of system test instrumentation. Dr. Jutman has been actively involved in
numerous FP5, FP6, FP7 R&D projects serving as a coordinator in two of
them.

Artjom Jasnetski received his M.Sc.degree in com-
puter engineering from Tallinn University of Tech-
nology, Estonia in 2013 and currently he is Ph.D.
student at Tallinn University of Technology. His
research interests include such topics as SiP test,
digital system modelling, ISP and HW driver im-
plementation.


