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DYNAMIC STABILITY CRITERION FOR THE 
EVALUATION OF A STEEL INDUSTRIAL HALL 
WITH INTERNAL TRANSPORT 

The paper presents the problem of dynamic criterion of stability loss of industrial 
hall with internal transport. The analysis was performed with finite element meth-
od. As a result of the calculation the relationship of eigenfrequency and axial com-
pressive force was presented. On the basis of these results fundamental recommen-
dations formulated for designers of steel halls with internal transport. 
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1. Introduction 

Steel halls are widespread in today’s industrial construction. Versatile 
qualities of steel provide structural engineers and architects with a wide range of 
opportunities to design a variety of structures from simple portal frames to state 
of the art projects with non-conventional shapes and functions. The structures 
are constructed relatively quickly and their price is more attractive than that of 
masonry buildings. Steel halls can be easily extended and adapted according to 
the needs of clients [1]. 
 The majority of steel halls are single storey, single or two bay industrial 
structures. No space divisions (partition walls) are constructed in the longitudi-
nal or transverse direction inside the building. External walls and roof covering 
define the floor area of the hall, secure the structure against the effects of loads 
induced by the external environment, and provide required rigidity.  
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 Industrial halls typically accommodate overhead cranes (top running, un-
derhung, or wall travelling cranes), which facilitate handling of heavy loads and 
ensure smooth transport.  

 

 

Rys. 1. Przemysłowa hala stalowa z transportem wewnętrznym [2] 

Fig. 1. Steel industrial hall with on-site handling [2] 

Steel industrial halls carry various dynamic and static loads, such as: 
− permanent loads (self weight), 
− large roof area-related loads (snow, wind), 
− equipment-related loads, e.g., overhead cranes,  
− vibration-induced loads and those from handling equipment collisions, 
− thermal effects, 
− seismic mechanism-related loads. 

The design of steel halls takes place in stages and, for the safety of opera-
tion and durability of the building, it is preceded by thorough analyses of struc-
tural systems, which carry the load to the foundations, in terms of statics, stabil-
ity and dynamics of the structure. 

The paper presents a dynamic evaluation of the stability of a steel industrial 
hall with on-site handling using the structural stability dynamic criterion pro-
posed by Gomuliński A. and Witkowski M. [3] for dynamic analysis of structur-
al movement stability. 
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2. Dynamic criterion of structural stability evaluation – BASIC 
concept  

 The term dynamic criterion of structural stability evaluation concerns the 
analysis of harmonic vibrations of the system under large longitudinal forces.  
 The main structural system is subjected to static, i.e., non-time-varying ex-
ternal load, which induces large axial forces S in the bars. These forces affect the 
stiffness of structural elements. Compressive forces decrease and tensile forces 
increase the stiffness of the bars. Further considerations will refer to the case 
when forces S induce large compressive forces in the bars.  
 The stiffness matrix is defined by the following formula (1) 

( )SKKK G−=~
 (1) 

where  
K – linear stiffness matrix, 
KG – geometric stiffness matrix.  
 

 Determining the conditions under which the system might move about the 
equilibrium position without the action of external excitation involves the analy-
sis of equation (3). The motion equation (3) results from the equation of energy 
balance (2)  

( ) )(tQqKKqCqM G =−++ ɺɺɺ  (2) 

where  
M – inertia (mass) matrix, 
C – damping matrix, 
K – linear stiffness matrix, 
KG – geometric stiffness matrix,  
Q(t) – force (time function) forcing the movement,  
q, qɺ , qɺɺ  – vector of displacement, velocity, acceleration, 

assuming that ( ) 0=tQ  and ignoring damping 0=C  at the lack of static loads 
KG=0. 

 0
~ =+ qKqM ɺɺ  (3) 

If we assume that  

qq ⋅−= 2ωɺɺ  (4) 

formula (3) can be written: 

( ) 0~~ 2 =− qMK ω  (5) 
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The solution to equation (5) has the form of harmonic functions of variable 
t (time), then, if condition (6) is satisfied 

( ) 0~~
det 2 =− MK ω  (6) 

The solution to equation (6) comprises an ordered set of values 
iω~ (i=1,2, … n), 

i.e., harmonic vibration frequency. The components of matrix K
~  are dependent 

on the current value of force S, which is why it affects values iω~ .  

( )Sii ωω ~~ =  (7) 

It is impossible to determine the analytic form of (7), but there is a simple 
way of analysing the effect of force S in the first, the smallest, frequency

1
~ω . For 

S = 0, matrix KK =~ , therefore equation (6) is equivalent with the equation de-
fining the critical balance state (8), and the values 

iω~  express the eigenfrequen-

cies of the structure 
iω . 

( ) 0det =− GKK  (8) 

The solution to equation (8) gives the critical values of the load∗S , which leads 
to the conclusion that if the force S reaches the smallest critical value, then solu-
tion to (6), i.e., the smallest root, is 0~2

1 =ω . 

If we assume that the force S increases from 0 to the first critical values
1∗S , 

then the smallest frequency of free harmonic vibrations decreases from 
1ω  to 0.  

Physical interpretation of this phenomenon is as follows: if force S reaches 
the critical value, vibration stops. Conversely, if the structure deviated from the 
equilibrium position does not vibrate and remains in the steady configuration, 
then the applied S force takes the critical value. 

Expression 

( ) 0~ =Siω  (9) 

defines the dynamic criterion of the loss of stability [3].  

3. Dynamic criterion of stability loss in steel industrial hall with 
internal transport - evaluation 

3.1. A brief description of the structure under investigation 

 The steel industrial hall shown in Fig. 2 (cross-section) and Fig. 3 (axono-
metric projection) was evaluated in terms of dynamic stability. 
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 The hall is a steel structure constructed on the reinforced concrete footing. 
It is located in Kielce, in the first wind load zone and third snow load zone. 
The soil at the foundation level is sandy loam with the index of liquidity IL=0.2. 
The foundation level was assumed to be 1m below the ground surface level. 
 

 

Rys. 2. Przekrój konstrukcji hali przemysłowej z transportem we-
wnętrznym [4] 

Fig. 2. Cross-section of the industrial hall with on-site handling [4] 

 The main structural system of the hall is a flat steel single bay frame of 
a single storey building with a monopitch roof and short cantilevers for support-
ing the runway beam. The connection between the columns and foundations is 
fully fixed, with a hinged/pinned connection between the steel rafter and the col-
umn. The structure has an axial span of 12m, and its height to the top point of 
the roof is 7.8m. The beam of the frame is a solid IPE 400 profile and the col-
umn is a solid HEB 320 profile. The running beams lean on a short steel cantile-
ver connected rigidly with the column shank. The steel cantilever was construct-
ed to be a plate element with variable height. 
 

 

Rys. 3. Rysunek aksonometryczny konstrukcji hali [4] 

Fig. 3. Axonometric projection of the hall structure [4] 
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 The short cantilever is connected with the shank by welding with the use of 
fillet weld. The joint is additionally strengthened with ribs. The roof beam and 
the column are connected by bolting.  
 The spatial layout of the hall comprises five flat structures mentioned above 
arranged at intervals of 6m. The roof is made from deep profile roof sheet placed 
on steel purlins that use IPE 200 sections arranged 2.4m apart. Roof bracings 
were made from steel rods 20 mm in diameter in the end regions of the roof. All 
connections in the roof structure were bolted, and the box profile sheet was fas-
tened with self-drilling screws. 
 Side and end walls were made of sandwich panels mounted to a steel sub-
frame. The bracing in the end regions used an equal leg angle 80x80x6. 
 The overhead crane girder used a solid profile HEA300. The tracks were 
secured with buffer stops. The overhead crane ZXJ with a capacity of 50 kN 
moves at a speed of 40m/min. The speed of a trolly is 30m/min, and the lifting 
speed reaches 12.5m/min. 
 The whole structure is made of class S235JR steel, with a pad footing of 
C30/37 concrete reinforced with RB500W steel.  

3.2. Dynamic criterion of stability of a steel industrial hall with internal 
transport - analysis 

The evaluation of dynamic stability of the hall used Autodesk Robot Struc-
tural Analysis Professional 2014 software, based on the Finite Element Method. 
The static diagram of the hall is shown in Fig. 4. Nodes from 35 to 38 are the 
points at which purlins are supported by main girders. 

 

 

Rys. 4. Schemat statyczny modelu hali [4] 

Fig. 4. Static diagram of the hall [4] 

The assumption that the axial forces applied to the columns of the structure 
increase from 0 (no compression; free vibration) to the value equal to the critical 
force (then some of the natural vibrations should be 0) was the basis for the 
analysis. The calculations used the FEM for different degrees of discretisation of 
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the frame columns to 1, 3 and 5 elements. The results are shown in Fig. 5 in the 
form of a graph. The graph shows the relationship between the eigenfrequency 
and axial forces in the columns. Since the degree of discretisation had a negligi-
ble effect on the value of the first critical force and the first eigenfrequency, the 
authors of this paper decided to only present the results for splitting the columns 
into five finite elements. 

 

 
Rys. 5. Zależność S(ω) dla podziału słupów na 5 elementów 
skończonych 

Fig. 5. Dependence of S(ω) for splitting the columns into five 
finite elements 

As shown in the graph above, the relationship of the vibration frequency and 
axial force is non-linear. When the compressive force in the columns approaches 
the critical value, vibration decays. When the structure is displaced from the equi-
librium position and there is no vibration, then the axial force value is equal to 
that of the critical force. The area closed between the graph and the axes of the 
coordinate system is called a safety region. If the eigenfrequency and the axial 
force in the columns form a pair of coordinates of the point contained within the 
safety region, the structure is not threatened with dynamic stability loss. 

3.3. Deformed geometries of the structure 

 Similarly to the case of stability analysis and eigenproblem analysis in dy-
namics, deformed geometries of structures can be represented as an issue of dy-
namic stability loss. This paper deals with three such modes: 
− in the absence of axial forces, this mode will be the mode of natural vibration 

(free vibrations), 
− if the axial forces are equal to the critical force, buckling occurs and vibrations 

decay, 
− the deformed mode for the axial forces of 1000 kN, then the eigenfrequency is 

11.91 rad/s. 
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Rys. 6. Postać odkształcona konstrukcji [5] 

Fig. 6. Deformed shape of the structure [5] 

Figure 6 shows the deformed mode identical for the three cases above. Ta-
bles 1, 2 and 3 present eigenvectors. For the presented mode, the nodal dis-
placement values correspond to components of eigenvector. The numbers of 
nodes and the axes are as in Fig. 4. 

Tabela 1. Wektor własny przy braku sił osiowych (drgania swobodne) 

Table 1. Eigenvector for the absence of axial forces (free vibrations) 

Node Case Form Component UX Component UZ Component RY 

2 4 1 0,00606656 -0,00000020 0,00149914 
6 4 1 0,00573902 0,00000025 0,00142820 
7 4 1 0,00606679 -0,00075005 0,00150024 
8 4 1 0,00573924 0,00071462 0,00142924 
9 4 1 0,00914418 -0,00000024 0,00155442 
10 4 1 0,00913328 0,00000032 0,00149501 
35 4 1 0,00883825 -0,00002753 0,00000802 
36 4 1 0,00883854 -0,00003892 0,00000198 
37 4 1 0,00883766 -0,00003659 -0,00000312 
38 4 1 0,00883608 -0,00002497 -0,00000548 
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Tabela 2. Wektor własny dla S=2167 kN 

Table 2. Displacements for S=2167 kN 

Node Case Form Component UX Component UZ Component RY 

2 4 1 0,00600761 -0,00000037 0,00161342 
6 4 1 0,00563370 0,00000035 0,00153495 
7 4 1 0,00600761 -0,00080708 0,00161342 
8 4 1 0,00563370 0,00076783 0,00153495 
9 4 1 0,00938550 -0,00000049 0,00172609 
10 4 1 0,00937549 0,00000048 0,00167261 
35 4 1 0,00904149 -0,00001211 0,00000137 
36 4 1 0,00904101 -0,00001135 -0,00000156 
37 4 1 0,00904101 -0,00000692 -0,00000167 
38 4 1 0,00904168 -0,00000564 0,00000106 

Tabela 3. Wektor własny dla S=1000 kN 

Table 3. Displacements for S=1000 kN 

Node Case Form Component UX Component UZ Component RY 

2 4 1 0,00604415 -0,00000028 0,00154838 
6 4 1 0,00569713 0,00000030 0,00147412 
7 4 1 0,00604428 -0,00077462 0,00154898 
8 4 1 0,00569725 0,00073751 0,00147469 
9 4 1 0,00925073 -0,00000036 0,00162811 
10 4 1 0,00924014 0,00000039 0,00157095 
35 4 1 0,00892829 -0,00002012 0,00000486 
36 4 1 0,00892829 -0,00002576 0,00000033 
37 4 1 0,00892783 -0,00002250 -0,00000240 
38 4 1 0,00892728 -0,00001581 -0,00000238 

 

The analysis indicates that the deformed shape remains unchanged with the 
axial force increasing in the columns. In the case of a hall with overhead rail, 
this mode has a sway-like character. 

4. Conclusions 

The performed analysis has a great practical importance, as the designer of 
steel halls has to account for both compressive forces in the columns and load-
induced vibration. Investigation of S(ω) is necessary for all buildings of this type 
and provides the answer to the fundamental question concerning the dynamic 
criterion of stability. A close relationship between axial forces and eigenfre-
quency of the structure is the reason why these quantities cannot be considered 
separately.  
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DYNAMICZNE KRYTERIUM OCENY STATECZNO ŚCI STALOWEJ 
HALI PRZEMYSŁOWEJ Z TRANSPORTEM WEWN ĘTRZNYM  

S t r e s z c z e n i e 

W referacie przedstawiono zagadnienie dynamicznej utraty stateczności hali stalowej 
z transportem wewnętrznym. Analizę przeprowadzono metodą elementów skończonych. Jako 
wynik obliczeń przedstawiono zależność częstości drgań własnych konstrukcji od siły ściskającej 
w słupach konstrukcji. Na podstawie wyników analizy sformułowano podstawowe zalecenia dla 
projektantów konstrukcji hal stalowych z transportem wewnętrznym. 
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