PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of heat transfer during flow condensation of natural refrigerants under conditions of increased saturation pressure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a modified in-house model for calculating heat transfer coefficients during flow condensation, which can be applied to a variety of working fluids, but natural refrigerants in particular, at full range thermodynamic parameters with a particular focus on increased saturation pressure. The modified model is based on a strong physical basis, namely the hypothesis of analogy between the heat transfer coefficient and pressure drop in two-phase flow. The model verification is based on a consolidated database that consists of 1286 data points for 7 natural refrigerants and covers the reduced pressure range (the ratio of critical pressure and saturation pressure) from 0.1 to 0.8 for different mass velocities and diameters. The new version of the in-house model, developed earlier by Mikielewicz, was compared with 4 other mathematical models widely recommended for engineering calculations and obtained the best consistency results. The value of the mean absolute percentage error was 28.13% for the modified model, the best result among the scrutinised methods.
Rocznik
Strony
49--56
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Pysz, M., Głuch, S., & Mikielewicz, D. (2023). Experimental study of flow boiling pressure drop and heat transfer of R1233zd(E) at moderate and high saturation temperatures. International Journal of Heat and Mass Transfer, 204, 123855. doi:10.1016/j.ijheatmasstransfer. 2023.123855
  • [2] Szewczuk-Krypa, N., Drosińska-Komor, M., Głuch, J., & Breńkacz, L. (2018). Comparison analysis of selected nuclear power plants supplied with helium from high-temperature gas-cooled reactor. Polish Maritime Research, 25(S1), 204–210. doi:10.2478/pomr-2018-0043
  • [3] Głuch, S.J., Ziółkowski, P., Witanowski, Ł., & Badur, J. (2021). Design and computational fluid dynamics analysis of the last stage of innovative gas-steam turbine. Archives of Thermodynamics, 42(3), 255‒258. doi: 10.24425/ ather.2021.138119
  • [4] Mikielewicz, D., & Mikielewicz, J. (2011). A common method for calculation of flow boiling and flow condensation heat transfer coefficients in minichannels with account of nonadiabatic effects. Heat Transfer Engineering, 32(13-14), 1173–1181. doi:10.1080/01457632.2011. 562728
  • [5] Jakubowska, B., & Mikielewicz, D. (2019). An improved method for flow boiling heat transfer with account of the reduced pressure effect. Thermal Science, 23(4), S1261–S1272. doi:10.2298/TSCI19S4261J
  • [6] Mikielewicz, D., & Mikielewicz, J. (2022). An improved MüllerSteinhagen and Heck model for two phase pressure drop modelling at high reduced pressures. Journal of Power Technologies,102(3), 81–87. https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1783
  • [7] Bohdal, T., Charun, H., & Sikora, M. (2011). Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels. International Journal of Heat and Mass Transfer, 54(9-10), 1963–1974. doi: 10.1016/j.ijheatmasstransfer.2011.01.005
  • [8] Dorao, C.A., & Fernandino, M. (2018). Simple and general correlation for heat transfer during flow condensation inside plain pipes. International Journal of Heat and Mass Transfer, 122, 290–305. doi: 10.1016/j.ijheatmasstransfer.2018.01.097
  • [9] Shah, M.M. (1979). A general correlation for heat transfer during film condensation inside pipes. International Journal of Heat and Mass Transfer, 22(4), 547–556. doi:10.1016/0017-9310(79)90058-9
  • [10] Shah, M.M. (2009). An improved and extended general correlation for heat transfer during condensation in plain tubes. HVAC and R Research, 15(5), 889–913. doi:10.1080/10789669.2009. 10390871
  • [11] Shah, M.M. (2019). Improved correlation for heat transfer during condensation in conventional and mini/micro channels. International Journal of Refrigeration, 98, 222–237. doi: 10.1016/ j.ijrefrig.2018.07.037
  • [12] Cavallini, A., Col, D.D, Doretti, L., Matkovic, M., Rossetto, L., Zilio, C., & Censi, G. (2006). Condensation in horizontal smooth tubes: A new heat transfer model for heat exchanger design. Heat Transfer Engineering, 27(8), 31–38. doi: 10.1080/ 01457630600793970
  • [13] Głuch, S., Pysz, M., & Mikielewicz, D. (2023). Flow maps and flow patterns of R1233zd(E) in a circular minichannel at low, medium and high values of saturation pressure. 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023, 402–413. 25-30 June, Las Palmas De Gran Canaria, Spain. doi: 10.52202/069564-0037
  • [14] Macdonald, M., & Garimella, S. (2016). Hydrocarbon condensation in horizontal smooth tubes: Part I ‒ Measurements. International Journal of Heat and Mass Transfer,93, 75–85. doi: 10.1016/j.ijheatmasstransfer.2015.09. 018
  • [15] Macdonald, M., & Garimella, S. (2016). Hydrocarbon condensation in horizontal smooth tubes: Part II - Heat transfer coefficient and pressure drop modeling. International Journal of Heat and Mass Transfer, 93, 1248–1261. doi: 10.1016/j.ijheatmasstransfer.2015.09.019
  • [16] Zhuang, X.R., Gong, M.Q., Zou, X., Chen, G.F., & Wu, J.F. (2016). Experimental investigation on flow condensation heat transfer and pressure drop of R170 in a horizontal tube. International Journal of Refrigeration, 66, 105–120.doi: 10.1016/j.ijrefrig.2016.02.010
  • [17] Zhuang, X.R., Chen, G.F., Zou, X., Song, Q.L., & Gong, M.Q. (2017). Experimental investigation on flow condensation of methane in a horizontal smooth tube. International Journal of Refrigeration, 78, 193–214. doi:10.1016/j.ijrefrig.2017.03.021
  • [18] Col, D.D., Azzolin, M., Bortolin, S., & Berto, A. (2017). Experimental results and design procedures for minichannel condensers and evaporators using propylene. International Journal of Refrigeration, 83, 23–38. doi: 10.1016/j.ijrefrig.2017.07.012
  • [19] Moreira, T.A., Ayub, Z H., & Ribatski, G. (2021). Convective condensation of R600a, R290, R1270 and their zeotropic binary mixtures in horizontal tubes. International Journal of Refrigeration, 130, 27–43. doi: 10.1016/j.ijrefrig.2021.06.031
  • [20] Milkie, J.A. (2014). Condensation of hydrocarbons and zeotropic hydrocarbon/refrigerant mixtures in horizontal tubes. PhD thesis, Georgia Institute of Technology. http://hdl.handle.net/1853/51825
  • [21] Longo, G.A., Mancin, S., Righetti, G., & Zilio, C. (2017). Saturated vapour condensation of HFC404A inside a 4 mm ID horizontal smooth tube: Comparison with the long-term low GWP substitutes HC290 (Propane) and HC1270 (Propylene). International Journal of Heat and Mass Transfer, 108, 2088–2099. doi: 10.1016/j.ijheatmasstransfer.2016.12.087
Uwagi
[1] This research was funded in whole or in part by National Science Centre, Poland 2021/41/N/ST8/04421.
[2] Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec903cca-cd79-444f-829a-16abc7030196
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.