PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Standing Waves in a Rectangular Resonator Containing Acoustically Active Gases

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The distribution of perturbations of pressure and velocity in a rectangular resonator is considered. A resonator contains a gas where thermodynamic processes take place, such as exothermic chemical reaction or excitation of vibrational degrees of a molecule’s freedom. These processes make the gas acoustically active under some conditions. We conclude that the incident and reflected compounds of a sound beam do not interact in the leading order in the case of the periodic sound with zero mean pressure including waveforms with discontinuities. The acoustic field before and after forming of discontinuities is described. The acoustic heating or cooling in a resonator is discussed.
Rocznik
Strony
67--73
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
  • Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-952 Gdańsk, Poland
Bibliografia
  • 1. Bauer H.J., Bass H.E. (1973), Sound amplification from controlled excitation reactions, Phys. Fluids, 16, 988–997, http://dx.doi.org/10.1063/1.1694494.
  • 2. Biwa T., Yazaki T. (2010), Observation of energy cascade creating periodic shock waves in a resonator, J. Acoust. Soc. Am., 127, 3, 1189–1192, http://dx.doi.org/10.1121/1.3291029.
  • 3. Chester W. (1964), Resonant oscillations in closed tubes, J. Fluid Mech., 18, 44–64, http://dx.doi.org/10.1017/S0022112064000040.
  • 4. Chu B.T. (1970), Weak nonlinear waves in nonequilibrium flows, [in:] Nonequilibrium flows, Wegener P.P. [Ed.], vol. 1, part 2, Marcel Dekker, New York.
  • 5. Clarke J.F., McChesney A. (1976), Dynamics of relaxing gases, Butterworth, UK.
  • 6. Hamilton M., Morfey C. (1998), Model equations, [in:] Nonlinear Acoustics, Hamilton M., Blackstock D. [Eds.], pp. 41–63, Academic Press, New York.
  • 7. Kaner V.A., Rudenko O.V., Khokholov R.V. (1977) Theory of nonlinear oscillations in acoustic resonators, Sov. Phys. Acoust., 23, 5, 432–437.
  • 8. Keller J.J. (1977), Nonlinear acoustic resonances in shock tubes with varying cross-sectional area, J. Appl. Math. Phys., 28, 107–122, http://dx.doi.org/10.1007/BF01590712.
  • 9. Makaryan V.G., Molevich N.E. (2007), Stationary shock waves in nonequilibrium media, Plasma Sources Sci. Technol., 16, 124–131.
  • 10. Molevich N.E. (2001), Sound amplification in inhomogeneous flows of nonequilibrium gas, Acoustical Physics, 47, 1, 102–105, http://dx.doi.org/10.1134/1.1340086.
  • 11. Mortell M.P., Mulchrone K.F., Seymour B.R. (2009), The evolution of macrosonic standing waves in a resonator, International Journal of Engineering Sience, 47, 11–12, 1305–1314, http://dx.doi.org/10.1016/j.ijengsci.2008.10.012.
  • 12. Ochmann M. (1985), Nonlinear resonant oscillations in closed tubes – an application of the averaging method, J. Acoust. Soc. Am., 77, 1, 61–66, http://dx.doi.org/10.1121/1.391901.
  • 13. Osipov A.I., Uvarov A.V. (1992), Kinetic and gasdynamic processes in nonequilibrium molecular physics, Sov. Phys. Usp., 35, 11, 903–923, http://dx.doi.org/10.1070/PU1992v035n11ABEH002275.
  • 14. Parker D.F. (1972), Propagation of damped pulses through a relaxing gas, Phys. Fluids, 15, 256–262, http://dx.doi.org/10.1063/1.1693902.
  • 15. Rudenko O.V., Soluyan S.I. (2005), Theoretical foundations of nonlinear acoustics, Consultants Bureau, New York, DOI: 10.1002/jcu.1870060222.
  • 16. Perelomova A. (2010), Nonlinear generation of nonacoustic modes by low-frequency sound in a vibrationally relaxing gas, Canadian Journal of Physics, 88, 4, 293–300, doi:10.1139/P10-011.
  • 17. Perelomova A. (2012), Standing acoustic waves and relative nonlinear phenomena in a vibrationally relaxing gas-filled resonator, Acta Acustica, 98, 713–721, http://dx.doi.org/10.3813/AAA.918552.
  • 18. Perelomova A., Pelc-Garska W. (2014), Standing waves and acoustic heating (or cooling) in resonators filled with chemically reacting gas, Archives of Acoustics, 39, 3, 403–410, doi: 10.2478/aoa-2014-0044.
  • 19. Perelomova A., Pelc-GarskaW. (2011), Non-wave variations in temperature caused by sound in a chemically reacting gas, Acta Physica Polonica A, 120, 3, 455–461.
  • 20. Zeldovich Ya. B., Raizer Yu. P. (1966), Physics of shock waves and high temperature hydrodynamic phenomena, Academic Press, New York.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec8de98e-f4fc-4dd4-b22d-2a2fa37ffd29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.