PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The land surface deformation caused by the liquidation of the Anna mine by flooding

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Deformacja powierzchni terenu spowodowana likwidacją kopalni Anna przez zatapianie
Języki publikacji
EN
Abstrakty
EN
The most worldwide method of liquidating underground hard coal mines is by spontaneous flooding as the result of the discontinuation of the rock mass drainage. Due to the hydrological reconstruction of the previously disturbed water system by mining operations, the movements of the rock mass with the opposite direction than subsidence appear. These movements are called rock mass uplift. This paper aims to present possible hazards related to land surface objects and the environment, which can appear during the flooding of the underground mine. The issue of proper forecasting of this phenomenon has so far been marginal in world literature. To date, only a few analytical methods have been used to predict the possible effects of surface deformation. Nowadays, the most common analytical method of forecasting surface deformation caused by the liquidation of underground workings by flooding is Sroka’s method. In this paper, the authors have presented analyses of flooding scenarios developed for a Polish mine and their impact on the land surface as well as the environment. The scenarios presented in the manuscript were selected for analysis as the most probable concerning the mine and the future plans of the mining enterprise. The process of flooding coal mines results in several risks for surface objects and underground infrastructure. This is why the uplift caused by the flooding of the mine should be predicted. The resulting uplifting movements can also, apart continuous deformation lead to the creation of much more dangerous phenomena involving discontinuous deformations.
PL
Najbardziej znaną na świecie metodą likwidacji podziemnych kopalń węgla kamiennego jest sa- moistne zatopienie jej w wyniku zaprzestania odwadniania górotworu. W związku z hydrologiczną odbudową zaburzonego wcześniej systemu wodnego przez eksploatację górniczą, pojawiają się ruchy górotworu o kierunku przeciwnym do osiadania. Ruchy nazywane są wypiętrzaniem masywu skalnego. Celem artykułu jest przedsta- wienie możliwych zagrożeń związanych z obiektami budowlanymi zlokalizowanych na powierzchni terenu oraz środowiskiem, jakie mogą wystąpić podczas zatapiania kopalni podziemnej. Kwestia prawidłowego prognozo- wania tego zjawiska była dotychczas w literaturze światowej marginalna. Do tej pory wykorzystano tylko kilka metod analitycznych do przewidywania możliwych skutków deformacji powierzchni ziemi. Obecnie najbardziej docenianą analityczną metodą prognozowania deformacji powierzchni spowodowanych likwidacją podziemnych wyrobisk przez zatapianie jest metoda Sroki. W artykule autorzy przedstawili analizę scenariuszy likwidacji opra- cowanych dla polskiej kopalni i ich wpływu na powierzchnię terenu oraz środowisko. Przedstawione w rękopisie scenariusze zostały wybrane do analizy jako najbardziej prawdopodobne ze względu na działalność kopalni i przy- szłych planów przedsiębiorstwa górniczego. Proces zatapiania kopalń podziemnych powoduje szereg zagrożeń dla obiektów naziemnych i infrastruktury podziemnej. Dlatego należy prognozować wypiętrzenie spowodowane likwidacją kopalni przez zatapianie. Powstające ruchy podnoszące mogą również, poza ciągłą deformacją, prowa- dzić do powstania znacznie groźniejszych zjawisk związanych z deformacjami nieciągłymi.
Rocznik
Strony
100--108
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Strata Mechanics Research Institute, Polish Academy of Sciences, ul. Reymonta 27, 30-059 Cracow, Poland
  • Strata Mechanics Research Institute, Polish Academy of Sciences, ul. Reymonta 27, 30-059 Cracow, Poland
autor
  • Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • 1. Álvarez, R., Ordóñez, A., De Miguel, E. & Loredo, C. (2016). Prediction of the flooding of a mining reservoir in NW Spain. Journal of Environmental Management, 184, 219-228. DOI: 10.1016/j.jenvman.2016.09.072
  • 2. Baglikow, V. (2011). Damage-relevant effects of mine water recovery – conclusions from the Erkelenz hard coal district. Markscheidewesen, 118, 10-16.
  • 3. Bekendam, R.F. & Pöttgens, J.J.E. (1995). Ground movements over the coal mines of southern Limburg, The Netherlands, and their relation to rising mine waters. 5tfh International Symposium on Land Subsidence, 3-12.
  • 4. Blachowski, J., Cacoń, S., & Milczarek, W. (2009). Analysis of post-mining ground deformations caused by underground coal extractions in complicated geological conditions. Acta Geodyn. Geomater, 6(3), 351-357.
  • 5. Caro Cuenca, M., Hooper, A.J. & Hanssen, R.F. (2013). Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radar interferometry. Journal of Applied Geophysics, 88, 1-11. DOI: 10.1016/j.jappgeo.2012.10.003
  • 6. Devleeschouwer, X., Declercq, P.Y., Flamion, B., Brixko, J., Timmermans, A. & Vanneste, J. (2008). Uplift revealed by radar interferometry around Liège (Belgium): a relation with rising mining groundwater. Proceedings of Post-Mining 2008, 1-13.
  • 7. Dudek, M., Rusek, J., Tajduś, K. & Słowik, L. (2021). Analysis of steel industrial portal frame building subjected to loads resulting from land surface uplift following the closure of underground mines. Archives of Civil Engineering, 67(3).
  • 8. Dudek, M., & Tajduś, K. (2021). FEM for prediction of surface deformations induced by flooding of steeply inclined mining seams. Geomechanics for Energy and the Environment, 100254. DOI: 10.1016/j.gete.2021.100254
  • 9. Dudek, M., Tajduś, K., Misa, R. & Sroka, A. (2020). Predicting of land surface uplift caused by the flooding of underground coal mines – A case study. International Journal of Rock Mechanics and Mining Sciences, 132, 104377. DOI: 10.1016/j.ijrmms.2020.104377
  • 10. Fenk, J. (2000). An analytical solution for calculating urface heave when flooding underground mine workings , 107, 4220–4422.
  • 11. Gudmundsson, A., Simmenes, T.H., Larsen, B. & Philipp, S.L. (2010). Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones. Journal of Structural Geology, 32(11), 1643–1655. DOI: 10.1016/j.jsg.2009.08.013
  • 12. Heitfeld, K., Heitfeld, M., Rosner, P. & Sahl, H. (2003). Controlled mine water increase in Aachen and Sudlimburg stone coal district. 5. Aachener Bergschandemkundliches Kolloquium, 71–85. (in German)
  • 13. Heitfeld, M., Rosner, P. & Mühlenkamp, M. (2016). Gutachten zu den Bodenbewegungen im Rahmen des stufenweisen Grubenwasseranstiegs in den Wasserprovinzen Reden und Duhamel. Bewertung des Einwirkungspotentials und Monitoring Konzept-Anstieg bis – 320 m NHN.
  • 14. Heitfeld, M., Rosner, P., Mühlenkamp, M. & Sahl, H. (2004). Bergschäden im Erkelenzer Steinkohlenrevier. 4. Altbergbaukolloquium, 281-295.
  • 15. Jakubick, A., Jenk, U. & Kahnt, R. (2002). Modelling of mine flooding and consequences in the mine hydrogeological environment: flooding of the Koenigstein mine, Germany. Environmental Geology, 42(2–3), 222-234. DOI: 10.1007/s00254-001-0492-9
  • 16. Jewartowski, T., Mizerka, J. & Mróz, C. (2015). Coal-Mine Liquidation as a Strategic Managerial Decision: a Decision-Making Model Based on the Options Approach / Archives of Mining Sciences, 60(3), 697–713. DOI: 10.1515/amsc-2015-0046 (in Polish)
  • 17. John, A. (2021). Monitoring of Ground Movements Due to Mine Water Rise Using Satellite-Based Radar Interferometry – A Comprehensive Case Study for Low Movement Rates in the German Mining Area Lugau/Oelsnitz. Mining, 1(1), 35-58. DOI: 10.3390/mining1010004
  • 18. Knothe, S. (1984). Prognozowanie wpływów eksploatacji górniczej. Wydawnictwo Śląsk (in Polish).
  • 19. Kołodziejczyk, P., Musioł, S. & Wesołowski, M. (2007). Ability to forecast mining area uplift as a result of mine flooding. 63(9), 6-11.
  • 20. Kowalska, I. J. (2014). Risk management in the hard coal mining industry: Social and environmental aspects of collieries’ liquidation. Resources Policy, 41, 124-134. DOI: 10.1016/j.resourpol.2014.05.002
  • 21. Krzemień, A., Suárez Sánchez, A., Riesgo Fernández, P., Zimmermann, K. & González Coto, F. (2016). Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management. Journal of Cleaner Production, 139, 1044-1056. DOI: 10.1016/j.jclepro.2016.08.149
  • 22. Liu, D. (2020). A numerical method for analyzing fault slip tendency under fluid injection with XFEM. Acta Geotechnica, 15(2), 325-345. DOI: 10.1007/s11440-019-00814-w
  • 23. Management of environmental risks during and after mine closure, Contract No. RFCR-CT-2015-00004. (2020).
  • 24. Milczarek, W. (2011). Analysis of changes in the rock mass surface after mining in a selected area of the former Wałbrzych Basin. Wroclaw University of Science and Technology. (in Polish).
  • 25. Mróz, T.M. & Grabowska, W. (2021). The use of geothermal energy in co-generated heat and power production in Poland – a case study. Archives of Environmental Protection, 47(3), 82-91. DOI: 10.24425/aep.2021.138466
  • 25. Pöttgens, J.J.E. (1985). Bodenhebung durch ansteigendes Grubenwasser. 6. Internationaler Kongress Für Markscheidewesen, 928-938.
  • 26. Preuβe, A., Kateloe, H.J. & Sroka, A. (2013). Subsidence and uplift prediction in German and Polish hard coal mining. Markscheidewesen, 120, 23-34.
  • 27. Samsonov, S., D’Oreye, N. & Smets, B. (2013). Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. International Journal of Applied Earth Observation and Geoinformation, 23, 142–154. DOI: 10.1016/j.jag.2012.12.008
  • 28. Sattari, A. & Eaton, D. (2014). Finite element modelling of fault stress triggering due to hydraulic fracturing. GeoConvention 2014: FOCUS Adapt, Refine, Sustain.
  • 29. Schaefer, W. (2007). Ground movements in the tectonics of the Rhenish lignite mining area, 215-225. (in Polish).
  • 30. Sroka, A. (2005). Ein Beitrag zur Vorausberechnung der durch den Grubenwasseranstieg bedingten Hebungen. 5. Altbergbau--Kolloquium, 453–462.
  • 31. Sroka, A., Preuβe, A., Tajduś, K. & Misa, R. (2016). Gutachterliche Stellungnahme zum Einfluss möglicher Grubenwasser-regulierungsmaßnahmen auf die Abwasserinfrastruktur der Emschergenossenschaft Teil 1/1: Markscheiderische Beurteilung.
  • 32. Sroka, A., Tajduś, K. & Misa, R. (2017). Gutachterliche Stellungnahme zur Auswirkung des Grubenwasseranstiegs im Ostfeld des Bergwerkes Ibbenbüren auf die Tagesoberfläche.
  • 33. Tajduś, A. & Tokarski, S. (2020). Risks Related to Energy Policy of Poland Until 2040 (EPP 2040). Archives of Mining Sciences, 877–899.
  • 34. Tajduś, K., Sroka, A., Misa, R. & Dudek, M. (2017). Examples of threats to the ground surface with discontinuous deformations of the surface type appearing over liquidated underground mining excavations, 19(3), 3-10. (in Polish).
  • 35. Vervoort, A. & Declercq, P.-Y. (2017). Surface movement above old coal longwalls after mine closure. International Journal of Mining Science and Technology, 27(3), 481-490. DOI: 10.1016/j.ijmst.2017.03.007
  • 36. Vervoort, A. & Declercq, P.-Y. (2018). Upward surface movement above deep coal mines after closure and flooding of underground workings. International Journal of Mining Science and Technology, 28(1), 53–59. https://doi.org/10.1016/j.ijmst.2017.11.008
  • 37. Wasielewski, R., Wojtaszek, M. & Plis, A. (2020). Investigation of fly ash from co-combustion of alternative fuel (SRF) with hard coal in a stoker boiler. Archives of Environmental Protection, 46 (No 2), 58-67. DOI: 10.24425/aep.2020.133475
  • 38. Wesołowski, M. (2012). Computer simulation of the impact of flooding mine workings of the former mine "Gliwice" and "Pstrowski" on land surface, 68(5), 54–59. (in Polish).
  • 39. Wysocka, M., Skubacz, K., Chmielewska, I., Urban, P. & Bonczyk, M. (2019). Radon migration in the area around the coal mine during closing process. International Journal of Coal Geology, 212, 103253. DOI: 10.1016/j.coal.2019.103253
  • 40. Zwierzchowski, R. & Różycka-Wrońska, E. (2021). Operational determinants of gaseous air pollutants emissions from coal-fired district heating sources. Archives of Environmental Protection, 47(3), 108-119.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec899143-e158-4bca-bdbb-4c53ab400b30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.