PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of polypropylene fiber structure and length on selected properties of concrete

Autorzy
Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Concrete, which is one of the most important construction materials, despite its many advantages (ease of use, high compressive strength, low production cost, resistance to high temperatures) also has disadvantages. These include low tensile strength and sensitivity to the damaging effects of chemical agents. The constant increase in expectation of increasing the quality of concrete has led to the modification of concrete with polymers. The presented research observed the influence of the structure and length of polymer fibers on the properties of concrete. The following types of concretes were used in the study: Portland cement CEM I 42.5R, sand, gravel aggregate of fractions 2-8 mm and 8-16 mm, water, Master Pozzolith STD plasticizer and polypropylene fibers of different length and structure. For each series of concretes, the following were determined: compressive strength after 7, 28 and 56 days of maturation, as well as water absorption, bulk density and frost resistance. In the next stage of the research, the surface layer of the synthesized composites was analyzed, determining mainly their morphology and elemental composition.
Rocznik
Tom
Strony
78--88
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Poland
Bibliografia
  • 1. Bagherzadeh, R., Sadeghi, A.-H., & Latifi, M. (2011) Utilizing polypropylene fibers to improve physical and mechanical properties of concrete. Text. Res. J., 82, 1, 88-96.
  • 2. Berkowski, P., & Kosior-Kazberuk, M. (2015) Effect of fiber on the concrete resistance to surface scaling due to cyclic freezing and thawing. Proc. Eng., 111, 121-127.
  • 3. Chaudhary, M., Srivastava, V., & Agarwal, V. (2014) Effect of waste low density polyethylene on mechanical properties of concrete. J. Acad. Ind. Res., 3, 123.
  • 4. Elzafraney, M., Soroushian, P., & Deru, M. (2005) Development of energy-efficient concrete buildings using recycled plastic aggregates. J. Archit. Eng., 11, 122-130.
  • 5. Halicka, A., Ogrodnik, P., & Zegardlo, B. (2013) Using ceramic sanitary ware waste as concrete aggregate. Constr. Build. Mater., 48, 295-305.
  • 6. Han, C.-G., Hwang, Y.-S., Yang, S.-H., & Gowripalan, N. (2005) Performance of spalling resistance of high performance concrete with polypropylene fiber contents and lateral confinement. Cem. Concr.Res., 35, 1747-1753.
  • 7. Helbrych, P. (2021) Effect of dosing with propylene fibers on the mechanical properties of concretes. Constr. Optimized Ener. Potenti., 2, 39-44.
  • 8. Helbrych, P. (2022) Mechanical properties of concretes modified with steel fibers and polypropylene. Sci. J. the Maritime University of Szczecin, 71(143), 56-63.
  • 9. Hsie, M., Tu, C., & Song, P. (2008) Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng.: A 494, 153-157.
  • 10. Jura, J., & Ulewicz, M. (2021) Assessment of the possibility of using fly ash from biomass combustion for concrete. Materials, 14, 6708.
  • 11. Kakooei, S., Akil, H.M., Jamshidi, M., & Rouhi, J. (2012) The effects of polypropylene fibers on the properties of reinforced concrete structures. Constr. Build. Mater., 27, 73-77.
  • 12. Karahan, O., & Atis, C.D. (2011) The durability properties of polypropylene fiber reinforced fly ash concrete. Mater. Des., 32, 1044-1049.
  • 13. Kayali, O., Haque, M., & Zhu, B. (1999) Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash. Cem. Concr. Res., 29, 1835-1840.
  • 14. Kayali, O., Haque, M., & Zhu, B. (2003) Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cement Concr. Compos., 25, 207-213.
  • 15. Khadakbhavi, B., Reddy, D.V.V., & Ullagaddi, D. (2010) Effect of aspect ratios of waste HDPE fibres on the properties of fibres on fiber reinforced concrete. Res. J. Eng. Technol., 3, 13-21.
  • 16. Kołtuńczyk, E., & Nowicka, G. (2007) Effect of poly(sodium- 4-styrenesulphonate) additives on properties of cement suspensions. Proceedings of International Scientific Conference Surfactants and Dispersed Systems in Theory and Practice. Ed. K.A. Wilk. Wrocław, PALMAPress, 533-536.
  • 17. Kosior-Kazberuk, M., & Berkowski, P. (2016) Fracture mechanics parameters of fine grained concrete with polypropylene fibres. Proc. Eng., 161, 157-162.
  • 18. Kumar, K., & Prakash, P. (2006) Use of waste plastic in cement concrete pavement. Adv. Mater. Res. J., 15, 1-21.
  • 19. Latifi, M.R., Biricik, O., & Mardani Aghabaglou, A. (2022) Effect of the addition of polypropylene fiber on concrete properties. J. Adhes. Sci. Technol., 36(4), 345-369.
  • 20. Lopez-Buendia, A.M., Romero-Sanchez, M.D., Climent, V., & Guillem, C. (2013) Surface treated polypropylene (PP) fibres for reinforced concrete. Cem. Concr. Res., 54, 29-35.
  • 21. Ma, M., Tam, V.W., Le, K.N., & Osei-Kuei, R. (2022) Factors affecting the price of recycled concrete: A critical review. J. Build. Eng., 46, 103743.
  • 22. Martinez-Barrera, G., Vigueras-Santiago, E., Hernandez-Lopez, S., Brostow, W., & Menchaca-Campos, C. (2005) Mechanical improvement of concrete by irradiated polypropylene fibers. Polym. Eng. Sci., 45, 1426-1431.
  • 23. Martinez-Barrera, G., Menchaca-Campos, C., Hernandez-Lopez, S., Vigueras-Santiago, E., & Brostow, W. (2006) Concrete reinforced with irradiated nylon fibers. J. Mater. Res., 21, 484-491.
  • 24. Martinez-Barrera, G., Urena-Nunez, F., Gencel, O., & Brostow, W. (2011) Mechanical properties of polypropylene-fiber reinforced concrete after gamma irradiation. Compos. A Appl. Sci. Manuf., 42, 567-572.
  • 25. Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S., & Hosseinpour, I. (2011) The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Constr. Build. Mater., 25, 351-358.
  • 26. Meddah, M.S., & Bencheikh, M. (2009) Properties of concrete reinforced with different kinds of industrial waste fibre materials. Constr. Build. Mater., 23, 3196-3205.
  • 27. Mesbah, H.A., & Buyle-Bodin, F. (1999) Efficiency of polypropylene and metallic fibres on control of shrinkage and cracking of recycled aggregate mortars. Constr. Build. Mater., 13, 439-447.
  • 28. Naik, T.R., Singh, S.S., Huber, C.O., & Brodersen, B.S. (1996) Use of post-consumer waste plastics in cement-based composites. Cem. Concr. Res., 26, 1489-1492.
  • 29. Nili, M., & Afroughsabet, V. (2010) The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Constr. Build. Mater., 24, 927-933.
  • 30. Pietrzak A. (2018) Assessment of the impact of recycling from pet bottles in selected concrete properties. Const. Optimized Ener. Potent., 7, 51-56.
  • 31. Pietrzak, A., & Ulewicz, M. (2018) The effect of the addition of polypropylene fibres on improvement on concrete quality. MATEC Web of Conferences 183, QPI 2018.
  • 32. Pietrzak, A., & Ulewicz, M. (2019) The impact of the length of polypropylene fibers on selected properties of concrete. Acta Sci. Pol. Architectura, 18(2), 21-25.
  • 33. Pietrzak, A. (2022) The use of polymer recyclates in the technology of concrete composites production. Mater. Res. Proc., 24, 83-89.
  • 34. PN-EN 14889-2:2007 Włókna do betonu - Część 2: Włókna polimerowe - Definicje, wymagania i zgodność.
  • 35. PN-EN 12390-1:2021-12. Badania betonu - Część 1: Kształt, wymiary i inne wymagania dotyczące próbek do badań i form.
  • 36. PN-EN 12390-2:2019-07. Badania betonu - Część 2: Wykonywanie i pielęgnacja próbek do badań wytrzymałościowych.
  • 37. Purcell, A., Forde, M.M., Maharaj, R., & Maharaj, C. (2021) Optimising the performance of crumb rubber modified concrete. J. Solid Waste Technol. Manage. 47(1), 137-145.
  • 38. Richardson, A.E. (2006) Compressive strength of concrete with polypropylene fibre additions. Struct. Surv., 24, 138-153.
  • 39. Sanjuan, M.A., & Moragues, A. (1997) Polypropylene-fibre-reinforced mortar mixes: optimization to control plastic shrinkage. Compos. Sci. Technol., 57, 655-660.
  • 40. Sivakumar, A., & Santhanam, M. (2007) A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete. Cement Concr. Compos., 29, 575-581.
  • 41. Song, P., Hwang, S., & Sheu, B. (2005) Strength properties of nylon-and polypropylene-fiberreinforced concretes. Cem. Concr. Res., 35, 1546-1550.
  • 42. Suji, D., Natesan, S., & Murugesan, R. (2007) Experimental study on behaviors of polypropylene fibrous concrete beams. J. Zhejiang Univ. Sci. A, 8, 1101-1109.
  • 43. Toutanji, H., McNeil, S., & Bayasi, Z. (1998) Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cem. Concr. Res., 28, 961-968.
  • 44. Toutanji, H.A. (1999) Properties of polypropylene fiber reinforced silica fume expansive-cement concrete. Constr. Build. Mater., 13, 171-177.
  • 45. Tomov, M., & Velkoska, C. (2022) Contribution of the quality costs to sustainable development. Prod. Eng. Arch., 28(2), 164-171.
  • 46. Ulewicz, M., & Halbiniak, J. (2016) Application of waste from utilitarian ceramics for production of cement mortar and concrete. Physicochem. Probl. Miner. Process., 52, 1002-1010.
  • 47. Ulewicz, M., & Pietrzak, A. (2021) Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats. Materials, 14, 872.
  • 48. Ulewicz, M., & Pietrzak, A. (2023) Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties. Materials, 16, 2231.
  • 49. Walczak, P., Małolepszy, J., Reben, M., & Rzepa, K. (2015) Mechanical properties of concrete mortar based on mixture of CRT glass cullet and fluidized fly ash. Proc. Eng., 108, 453-458.
  • 50. Wang, Y., Zureick, A.-H., Cho, B.S., & Scott, D. (1994) Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste. J. Mater. Sci., 29, 4191-4199.
  • 51. Wang, Y., Wu, H., & Li, V.C. (2000) Concrete reinforcement with recycled fibers. J. Mater. Civ. Eng.,12, 314-319.
  • 52. Wongtanakitcharoen, T., & Naaman, A.E. (2007) Unrestrained early age shrinkage of concrete with popypropylene, PVA, and carbon fibers. Mater. Struct., 40, 289-300.
  • 53. Yao, W., Li, J., & Wu, K. (2003) Mechanical properties of hybrid fiber reinforced concrete at low fiber volume fraction. Cem. Concr. Res., 33, 27-30.
  • 54. Zhang, Y., Mao, Y., Jiao, L. Shuai, C., & Zhang, H. (2021) Eco-efficiency, eco-technology innovation and eco-well-being performance to improve global sustainable development. Environ. Impact Assess. Rev., 89, 106580.
Identyfikator YADDA
bwmeta1.element.baztech-ec8717bc-e7d2-49f8-820a-1391c5178785