Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work introduces dynamic mechanical thermal analysis (DMTA) as an efficient method for the assessment of the shelf life of solid composite solid propellants in air and nitrogen atmospheres. The samples were aged at three temperatures 323.15, 333.15, and 343.15 K for 60, 120, and 180 days. The two different methods of Arrhenius and Berthelot were used to compare the effects of air and nitrogen atmospheres on the ageing of composite solid propellants. Damping (Tan δ) of composite solid propellants was used to determine the shelf life of the samples based on the loss of half of the physical property Tan δ (50% drop in damping). For the air atmosphere, the calculated activation energy for the degradation reactions of the samples was 86.26 kJ·mol–1. Both models, Arrhenius and Berthelot, confirmed that the shelf lives of the samples under the nitrogen atmosphere are more than four times those in an air atmosphere.
Rocznik
Tom
Strony
25--45
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Iran
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Iran
autor
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Iran
Bibliografia
- [1] Keshavarz, M.H., Research Progress on Heats of Formation and Detonation of Energetic Compounds. In: Hazardous Materials: Types, Risks and Control. (Brar, S.K. Ed.) Nova Science Publishers, Inc., New York, 2011, pp. 339-359; ISBN 978-1-62417-518-3.
- [2] Klapötke, T.M. Energetic Materials Encyclopedia. Walter de Gruyter GmbH & Co KG, 2018; ISBN 311044139X.
- [3] Klapötke, T.M. Chemistry of High-Energy Materials. 5th ed., Walter de Gruyter GmbH & Co KG, 2019; ISBN 978-3110624380.
- [4] Agrawal, J.P. High Energy Materials: Propellants, Explosives and Pyrotechnics WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010; ISBN 978-3-527- 32449-1.
- [5] Keshavarz, M.H. A New General Correlation for Predicting Impact Sensitivity of Energetic Compounds. Propellants Explos. Pyrotech. 2013, 35: 1-7.
- [6] Keshavarz, M.H.; Hayati, M.; Lavasani, S.G.; Zohari, N. A New Method for Prediction of Friction Sensitivity of Nitramines. Cent. Eur. J. Energ. Mater. 2015, 12: 215-227.
- [7] Keshavarz, M.H.; Pouretedal, H.R.; Semnani, A. Reliable Prediction of Electric Spark Sensitivity of Nitramines: A General Correlation with Detonation Pressure. J. Hazard. Mater. 2009, 167: 461-466.
- [8] Keshavarz, M.H.; Moradi, S.; Saatluo, B.E.; Rahimi, H.; Madram, A. A Simple Accurate Model for Prediction of Deflagration Temperature of Energetic Compounds. J. Therm. Anal. Calorim. 2013, 112: 1453-1463.
- [9] Keshavarz, M.H.; Motamedoshariati, H.; Pouretedal, H.R.; Tehrani, M.K.; Semnani, A. Prediction of Shock Sensitivity of Explosives Based on Small Scale Gap Test. J. Hazard. Mater. 2007, 145: 109-112.
- [10] Davenas, A. Solid Rocket Propulsion Technology. Technology and Research Director. Pergamon Press Ltd., Oxford, 1993.
- [11] Keshavarz, M.H. A Simple Procedure for Calculating Condensed Phase Heat of Formation of Nitroaromatic Energetic Materials. J. Hazard. Mater. 2006, 136(3): 425-431.
- [12] Gligorijević, N.; Živković, S.; Subotić, S.; Pavković, B.; Nikolić, M.; Kozomara, S.; Rodić, V. Mechanical Properties of HTPB Composite Propellants in the Initial Period of Service Life. Sci.-Tech. Rev. 2014, 64(4): 8-16.
- [13] Cerri, S.; Bohn, M.A.; Menke, K.; Galfetti, L. Ageing Behaviour of HTPB Based Rocket Propellant Formulations. Cent. Eur. J. Energ. Mater. 2009, 6(2): 149-165.
- [14] Bihari, B.K.; Wani, V.; Rao, N.; Singh, P.; Bhattacharya, B. Determination of Activation Energy of Relaxation Events in Composite Solid Propellants by Dynamic Mechanical Analysis. Def. Sci. J. 2014, 64(2): 173-178.
- [15] Keshavarz, M.H. Research Progress on Heats of Formation and Detonation of Energetic Compounds. In: Hazardous Materials: Types, Risks and Control. (Yu, C.; Wei, Z., Eds.) Nova Science Publishers Inc., New York, 2011, Ch. 4, pp. 339-359.
- [16] de la Fuente, J.L. An Analysis of the Thermal Aging Behaviour in High Performance Energetic Composites through the Glass Transition Temperature. Polym. Degrad. Stab. 2009, 94(4): 664-669.
- [17] Tcharkhtchi, A.; Farzaneh, S.; Abdallah-Elhirtsi, S.; Esmaeillou, B.; Nony, F.; Baron, A. Thermal Aging Effect on Mechanical Properties of Polyurethane. Int. J. Polym. Anal. Charact. 2014, 19(7): 571-584.
- [18] Krishnan, K.; Viswanathan, G.; Kurian, A.J.; Ninan, K.N. Kinetics of Decomposition of Nitramine Propellant by Differential Scanning Calorimetry. Def. Sci. J. 1992, 42(3), 135-139.
- [19] Salehi, H.; Eslami, M.; Sarbolouki, M.N. Probing the Cure and Postcure Reactions in Polyurethanes by FTIR and GPC. Iran. J. Chem. Chem. Eng. 1996, 15(2): 87-92.
- [20] Sepe, M. Dynamic Mechanical Analysis for Plastics Engineering. Elsevier Science, New York, 1998; ISBN 9781884207648.
- [21] Farhadian, A.H.; Tehrani, M.K.; Keshavarz, M.H.; Karimi, M.; Darbani, S.M.R.; Rezayi, A.H. A Novel Approach for Investigation of Chemical Aging in Composite Propellants through Laser-Induced Breakdown Spectroscopy (LIBS). J Therm. Anal. Calorim. 2015, 124: 279-286.
- [22] Farhadian, A.; Tehrani, M.K.; Keshavarz, M.H.; Darbani, S. Raman Spectroscopy Combined with Principle Component Analysis to Investigate the Aging of High Energy Materials. Laser Phys. 2017, 27(7): 075701.
- [23] Farhadian, A.H.; Tehrani, M.K.; Keshavarz, M.H.; Karimi, M.; Darbani, S.M.R. Relationship between the Results of Laser-Induced Breakdown Spectroscopy and Dynamical Mechanical Analysis in Composite Solid Propellants during Their Aging. Appl. Opt. 2016, 55(16): 4362-4369.
- [24] Farhadian, A.H.; Tehrani, M.K.; Keshavarz, M.H.; Darbani, S.M.R. Energetic Materials Identification by Laser-Induced Breakdown Spectroscopy Combined with Artificial Neural Network. Appl. Opt. 2017, 56(12): 3372-3377.
- [25] Ahmadi, S.H.; Keshavarz, M.H.; Hafizi Atabak, H.R. Introducing Laser Induced Breakdown Spectroscopy (LIBS) as a Novel, Cheap and Non‐destructive Method to Study the Changes of Mechanical Properties of Plastic Bonded Explosives (PBX). Z. Anorg. Allg. Chem. 2018, 644(23): 1667-1673.
- [26] Ahmadi, S.H.; Keshavarz, M.H.; Atabak, H.R.H. Correlations Between Laser Induced Breakdown Spectroscopy (LIBS) and Dynamical Mechanical Analysis (DMA) for Assessment of Aging Effect on Plastic Bonded Explosives (PBX). Z. Anorg. Allg. Chem. 2019, 645(2): 120-125.
- [27] Judge, M.D. An Investigation of Composite Propellant Accelerated Ageing Mechanisms and Kinetics. Propellants Explos. Pyrotech. 2003, 28(3): 114-119.
- [28] Judge, M.D.; Badeen, C.M.; Jones, D.E.G. An Advanced GAP/AN/TAGN Propellant. Part II: Stability and Storage Life. Propellants Explos. Pyrotech. 2007, 32(3): 227-234.
- [29] Shekhar, H. Prediction and Comparison of Shelf Life of Solid Rocket Propellants Using Arrhenius and Berthelot Equations. Propellants Explos. Pyrotech. 2011, 36(4): 356-359.
- [30] Gorji, M.; Mohammadi, K. Comparison of Berthelot and Arrhenius Approaches for Prediction of Liquid Propellant Shelf Life. Propellants Explos. Pyrotech. 2013, 38(5): 715-720.
- [31] Xie, Z.M.; Chen, S.C.; Wang, Y.S. Relaxation Properties of the Solid Propellant Based on Hydroxyl-Terminated Polybutadiene. Adv. Mater. Res. 2014, 989-994: 172-176.
- [32] Pakdehi, S.G.; Niknam, M. Shelf Life Prediction of a Novel Liquid Fuel, 2-Dimethylaminoethyl Azide (DMAZ). Cent. Eur. J. Energ. Mater. 2017, 14(3): 675-687.
- [33] Elbasuney, S.; Elghafour, A.M.; Radwan, M.; Fahd, A.; Mostafa, H.; Sadek, R.; Motaz, A. Novel Aspects for Thermal Stability Studies and Shelf Life Assessment of Modified Double-base Propellants. Def. Technol. 2019, 15(3): 300-305.
- [34] Adel, W.M.; Guozhu, L. Service Life Prediction of AP/Al/HTPB Solid Rocket Propellant with Consideration of Softening Aging Behavior. Chin. J. Aeronaut. 2019, 32(2): 361-68.
- [35] Shekhar, H. Effect of Temperature on Mechanical Properties of Solid Rocket Propellants. Def. Sci. J. 2011, 61(6): 529-533.
- [36] Celina, M.; Minier, L.; Assink, R. Development and Application of Tools to Characterize the Oxidative Degradation of AP/HTPB/Al Propellants in a Propellant Reliability Study. Thermochim. Acta 2002, 384(1-2): 343-349.
- [37] Kishore, K.; Verneker, V.P.; Prasad, G. Mechanism of Ageing of Composite Solid Propellants. Combust. Flame 1979, 36: 79-85.
- [38] Layton, L.H. Chemical Structural Aging Studies on HTPB Propellant. AFRPLTR-75-13, 1975.
- [39] Bunyan, P.; Cunliffe, A.V.; Davis, A.; Kirby, F.A. The Degradation and Stabilization of Solid Rocket Propellants. Polym. Degrad. Stab. 1993, 40(2): 239-250.
- [40] a) ASTM D 638 : 2008: Standard Test Method for Tensile Properties of Plastics. 2008. b) Nilsson, B.; Sanden, R. Accelerated Ageing of HTPB Based Composite Propellant and Liners. Foersvarets Forskningsanstalt, Report FOA-C-20405-D1, Stockholm, Sweden, 1981.
- [41] Sanecka, P.W.; Florczak, B.; Maranda, A. Investigation of Properties of Heterogeneous Solid Rocket Propellants After Accelerated Aging. CHEMIK 2016, 70(1): 23-26.
- [42] Hocaoğlu, Ö.; Pekel, F.; Özkar, S. Aging of HTPB/AP‐based Composite Solid Propellants, Depending on the NCO/OH and Triol/Diol Ratios. J. Appl. Polym. Sci. 2001, 79(6): 959-964.
- [43] Kivity, M.; Hartman, G.; Achlama, A.M. Aging of HTPB Propellant. Proc. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper, Tucson, Arizona, 2005.
- [44] Goheen, S.C.; Saunders, R.M.; Harvey, S.; Olsen, P. Raman Spectroscopy of 2‐Hydroxyethyl methacrylate‐Acrylamide Copolymer Using Gamma Irradiation for Cross‐linking. J. Raman Spectrosc. 2006, 37(11): 1248-1256.
- [45] Kohga, M. Dynamic Mechanical Properties of Hydroxyl-terminated Polybutadiene Containing Polytetrahydrofuran as a Plasticizer. Nihon Reoroji Gakkaishi 2012, 40(4), 185-193.
- [46] Cerri, S.; Bohn, M.A.; Menke, K.; Galfetti, L.J.P. Aging of HTPB/Al/AP Rocket Propellant Formulations Investigated by DMA Measurements. Propellants Explos. Pyrotech. 2013, 38(2): 190-198.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec812962-d6ac-40a9-8ee3-61c91473581c