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Abstract. We abandon the setting of the domain as a Cartesian product of real intervals,
customary for first order PFDEs (partial functional differential equations) with initial bound-
ary conditions. We give a new set of conditions on the possibly unbounded domain Ω with
Lipschitz differentiable boundary. Well-posedness is then reliant on a variant of the normal
vector condition. There is a neighbourhood of ∂Ω with the property that if a characteristic
trajectory has a point therein, then its every earlier point lies there as well. With local as-
sumptions on coefficients and on the free term, we prove existence and Lipschitz dependence
on data of classical solutions on (0, c)×Ω to the initial boundary value problem, for small c.
Regularity of solutions matches this domain, and the proof uses the Banach fixed-point theo-
rem. Our general model of functional dependence covers problems with deviating arguments
and integro-differential equations.
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1. INTRODUCTION

We consider the functional differential problem:

∂tz(t, x) +
n∑

j=1

ρj(t, x, zα(t,x)) ∂xj
z(t, x) = G(t, x, zα(t,x)) on E, (1.1)

z(t, x) = ϕ(t, x) on E0 ∪ ∂0E, (1.2)

where E = (0, a)×Ω, a > 0, E0 = [−b0, 0]×Ω, b0 ≥ 0, and ∂0E stands for (0, a]×∂Ω.
The domain Ω ⊂ Rn has C1 boundary. Given functions G, ρj, j = 1, . . . , n, are
defined on E ×X , with X – the set of bounded uniformly continuous real functions
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on D = [−b0 − a, 0] ×
{
p− q : p ∈ Ω, q ∈ Ω

}
. The deviating function α : E → E,

α = (α0, α1, . . . , αn), with α0(t, x) ≤ t, allows for (a wide class of) delays in (1.1), as
just one of a particular case.

We define the Hale operator E ∋ (t, x) 7→ z(t,x) ∈ X by z(t,x)(τ, y) = z̃(t+τ, x+y),
where z̃ is a continuous extension of z : E0 ∪ ∂0E ∪ E → R onto R1+n. To make this
definition usable, we require

Condition 1.1. For any (t, x) ∈ E and any w, w̄ ∈ X ,

w ≡ w̄ on (D + α(t, x)) ∩ (E0 ∪ ∂0E ∪ E)

implies {
G(t, x, w) = G(t, x, w̄),

ρj(t, x, w) = ρj(t, x, w̄), j = 1, . . . , n.

Thanks to the above condition, the original values of z (and not z̃) are sufficient
for the unique definition of G(t, x, zα(t,x)), ρj(t, x, zα(t,x)). This construction is due to
[25]. Note that if the Hale operator had been defined in a standard way (z(t,x)(s, y) =
z(t + s, x + y), (t, x) ∈ E, (s, y) ∈ D , D fixed), then it would have required z to be
given on the algebraic sum E + D = {p+ q : p ∈ E, q ∈ D}. Such a type (E + D) of
the domain of z is adopted in many papers on PFDEs. In many interesting cases of
functional dependence, the model requires ∂0E to be larger than in our setting.

For convenience, let Ec stand for E ∩ ((−∞, c) × Rn), and let ∂0Ec = ∂0E ∩
((−∞, c) × Rn), where 0 < c ≤ a. Additionally, we will denote by E∗

c the sum E0 ∪
∂0Ec ∪ Ec.

We will discuss the question of local existence and continuous dependence on the
initial boundary data of classical C1.L solutions to (1.1), (1.2). A function z̃ : E∗

c → R

is a classical C1.L solution of (1.1), (1.2), if it is bounded and has Lipschitz continuous
derivative everywhere in the domain, and if it satisfies (1.1) on Ec and (1.2) on
E0 ∪ ∂0Ec. Assumed regularity is natural in the case of x-dependent α0, as we have
pointed out in [9].

Our existence result can be treated as a continuation of the author’s study [10].
In the latter, we have chosen the domain to be a Cartesian product of real intervals;
this was common to all other works on mixed problems for hyperbolic PFDEs, with
the only exception being our recent paper [11]. The important point to note here is
that taking a cylindrical domain instead, one has to ensure the well-posedness of the
problem. Our aim is therefore to find fairly modest conditions on the regularity of Ω,
taking into account its possible unboundedness. The task is additionally complicated
by the regularity requirements on the (defined later) left-end of characteristic, which
lies at ∂Ω. Unfortunately, the cone condition variant formulated in [11], is not well
adapted to C1.L solutions.

Let us mention various larger solution classes for first order partial functional
differential problems. First results on C1 solutions were obtained in [3, 21] by means
of the method of successive approximations. This method is due to T. Ważewski,
who introduced it for systems without functional dependence in [28]. In addition to
classical solutions, the following classes of generalised solutions to hyperbolic PFDEs
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are present in the literature. Mixed problems for almost linear systems in two indepen-
dent variables were treated in [24], see also [19]. A continuous function is a solution
of a mixed problem if it satisfies an integral functional system, which arises from
the functional differential system by integrating along characteristics. The paper [24]
initiated investigations of first order PFDEs. Distributional solutions of almost linear
problems were considered in [26]. The method used in this paper is constructive; it is
based on a difference scheme.

The class of Carathéodory solutions consists of all functions which are continuous
and have their partial derivatives almost everywhere in a domain. The set of all
points where the differential functional equation is not fulfilled is of Lebesgue measure
zero. The existence and uniqueness results for quasilinear systems with initial or
initial-boundary conditions, in the class of Carathéodory solutions, can be found in
[13, 27]. Initial problems for non-linear equations were considered in [14].

An essential extension of some ideas concerning classical solutions of first or-
der PFDEs is given in [3, 4], where the Cinquini Cibrario solutions are considered.
This class of solutions is placed between classical solutions and solutions in the
Carathéodory sense. Its name stems from S. Cinquini and M. Cinquini Cibrario, who
introduced and widely studied the method of characteristics for quasilinear problems
in a nonfunctional setting, see [6–8].

The monograph [20] contains an exposition of results on existence and uniqueness
of generalised and classical solutions to hyperbolic functional differential equations.

First order partial differential equations with deviating variables and differential
integral equations find applications in different fields of knowledge. We give a few
examples.

In the theory of the distribution of wealth, the density of households at time t
depending on their estates is governed by an equation with deviating variables; for
details see [16].

As remarked in [2], there are various problems in non-linear optics which lead
to hyperbolic integro-differential problems. One of such physical phenomena is the
harmonic generation of laser radiation through piezoelectric crystals for non dispersive
materials and of the Maxwell-Hopkinson type. This non-linear problem is modelled
in [2] by an equation perturbed by dissipative integral terms of Volterra type.

The following problems in population dynamics have mathematical models involv-
ing hyperbolic functional differential equations. Age dependent epidemics of vertically
transmitted diseases are driven, as investigated in [17], by a non-linear functional dif-
ferential system. Non-linear equations describe also the growth of a population of cells
which constantly differentiate (change their properties) in time; for example, a model
of the production of erythrocytes based on a continuous maturation-proliferation
scheme is developed in [22]. A more simple, almost linear problem is considered in
[5] as a description of another proliferating cell population dynamics. The paper [18]
discusses optimal harvesting policies for age-structured population harvested with
effort independent of age.

The class of problems we consider, appears also in the non-linear theory describing
the motion of viscoelastic media, see [23]. For further bibliography on applications of
PFDEs see the monographs [20, 29].
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2. WELL-POSEDNESS AND CERTAIN NEIGHBORHOOD OF ∂Ω

2.1. DOMAIN AND DATA REGULARITY

For U ⊂ R1+n and a normed space (Y, ‖ · ‖Y ), we define Cm(U, Y ) to be the set
of Y -valued functions, which have on U bounded and uniformly continuous partial
derivatives up to the order m ≥ 0; with the usual meaning C0 = C. We write it
simply Cm(U), if no confusion can arise.

By a convenient abuse of notation, we will use the symbol |·| for the Euclidean norm
in Rn, mostly in our geometrical considerations; this norm lies under the notion of
distance dist(·, ·) between a point and a set, each time we use it. For k, l being arbitrary
positive integers, we denote by Mk×l the class of all k× l matrices with real elements,
and we choose the norms in Rk and Mk×l to be ∞-norms: ‖y‖ = ‖y‖∞ = max1≤i≤k |y|

and ‖A‖ = ‖A‖∞ = max1≤i≤k
∑l

j=1 |aij |, respectively, where A = [aij ]i=1,...,k,j=1,...,l.
The product of two matrices is denoted by “∗”.

We assume that the domain Ω satisfies a uniform C1.L-regularity condition, which
is a variant of the one from [1], concerning C1-regularity. Let Φ be a one-to-one
transformation of a domain U ⊂ Rn onto a domain V ⊂ Rn, having inverse Ψ = Φ−1.
We say that Φ is 1-smooth if all components of Φ and Ψ belong to C1(U) and to
C1(V ), respectively. We denote by Ωδ the set of points in Ω within distance δ of the
boundary of Ω:

Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ} .

Assumption H[Ω]. There exists a locally finite open cover {Uj} of ∂Ω, and a cor-
responding sequence {Φj} of 1-smooth transformations, with Φj taking Uj onto the
unit ball B = {y ∈ Rn : |y| < 1} and having inverse Ψj = Φ−1

j , such that:

(i) For some δ > 0, Ωδ ⊂
⋃∞
j=1 Ψj({y ∈ Rn : |y| < 1/2}).

(ii) For each j, Φj(Uj ∩ Ω) = {y ∈ B : yn > 0}.

(iii) There is a finite constant M̃ such that for every j

‖∂xΦj(x)‖ ≤ M̃ for x ∈ Uj,

‖∂yΨj(y)‖ ≤ M̃ for y ∈ B,

that is, the norms of Jacobi matrices for Φj and Ψj are uniformly bounded by M̃ .

(iv) There is a finite constant L̃ such that for any j, x, x̄ ∈ Uj , 1 ≤ i ≤ n− 1, there

is ‖∂xφji(x)− ∂xφji(x̄)‖ ≤ L̃‖x− x̄‖.
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We are now in a position to formulate the regularity condition for data ϕ. To this
end, define, for each j, a function

Fj : (0, a)×
{
(y1, . . . , yn−1) ∈ R

n−1 : (y1, . . . , yn−1, 0) ∈ B
}
→ R

by
Fj(t, y1, . . . , yn−1) = ϕ(t,Ψj(y1, . . . , yn−1, 0)). (2.1)

Assumption H[ϕ]. The function ϕ : E0 ∪ ∂0E → R is bounded by a constant p0,
and Lipschitz-continuously differentiable in the following sense:

1. If b0 > 0 then ϕ is differentiable on (−b0, 0)× Ω.
2. Function ϕ(0, ·) is differentiable on Ω.
3. Each Fj is differentiable on (0, a)× {y ∈ B : yn = 0}.
4. In the above cases, the corresponding partial derivatives are bounded by p1/n, and

Lipschitz continuous, with the constant p2/(n+1); both constants are uniform in j.
5. Partial derivatives with respect to y1, . . . , yn−1 of ϕ(0,Ψj(y)) are continuous on

{y ∈ B : yn ≥ 0}, for each j.

2.2. INTEGRAL FUNCTIONAL SYSTEM AND A SOLUTION ESTIMATE

Let U be an open subset of R1+n. For z : U → R and (t, x) ∈ U , denote

∂xz(t, x)=(∂x1
z(t, x), . . . , ∂xn

z(t, x))

and
Dz(t, x)=(∂tz(t, x), ∂x1

z(t, x), . . . , ∂xn
z(t, x)).

Similarly, for z : U → Rn, z = (z1, . . . , zn), and (t, x) ∈ U , denote

∂xz(t, x)=[∂xj
zi(t, x)]i,j=1,...,n and Dz(t, x)= [(Dz1(t, x))

T , . . . , (Dzn(t, x))
T ]T .

Write, for z : U → Y , ‖z‖C(U,Y ) for the usual supremum norm, and

|z|C0.L(U,Y ) = sup

{
‖z(t, x)− z(t, x̄)‖Y
max{|t− t̄|, ‖x− x̄‖}

: (t, x), (t̄, x̄) ∈ U, (t, x) 6= (t̄, x̄)

}
,

‖z‖C1(U,Y ) = ‖z‖C(U,Y ) + ‖Dz‖C(U,Y 1+n),

‖z‖C1.L(U,Y ) = ‖z‖C1(U,Y ) + |Dz|C0.L(U,Y 1+n),

‖ · ‖0 = ‖ · ‖C(D,R) or ‖ · ‖0 = ‖ · ‖C(D,R1+n),

‖ · ‖1 = ‖ · ‖C1(D,R),

| · |L = | · |C0.L(D,R1+n).

The symbol C1.L(U, Y ) stands for the set of all z ∈ C1(U) with ‖z‖C1.L(U,Y ) <∞.
Let us introduce the notation for the function space, where we seek a solution to

(1.1), (1.2). Given ϕ satisfying Assumption H[ϕ], we set

C1.L
ϕ.c =

{
z ∈ C1.L(E∗

c ,R) : z ≡ ϕ on E0 ∪ ∂0Ec
}
.
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As our main result, we aim to prove that, under suitable assumptions on ρ =
(ρ1, . . . , ρn)

T , G, α, ϕ and for sufficiently small c ∈ (0, a], there exists a solution
z̄ of problem (1.1), (1.2) such that z̄ ∈ C1.L

ϕ.c .

Suppose that ϕ satisfies Assumption H[ϕ] and z ∈ C1.L
ϕ.c . For a point (t, x) ∈ Ec,

we consider the Cauchy problem

η′(τ) = ρ(τ, η(τ), zα(τ,η(τ))), η(t) = x, (2.2)

and denote by g[z](·, t, x) = (g1[z](·, t, x), . . . , gn[z](·, t, x))
T its classical solution. This

function is the characteristic of the equation (1.1), corresponding to z. Let δ[z](t, x) be
the left-end of the maximal interval on which the characteristic g[z](·, t, x) is defined
(more briefly: the left-end of characteristic). Write

Q[z](τ, t, x) = (τ, g[z](τ, t, x), zα(τ,g[z](τ,t,x))),

S[z](t, x) = ( δ[z](t, x), g[z](δ[z](t, x), t, x) ),

and

Fz(t, x) =




ϕ(S[z](t, x)) +

t∫
δ[z](t,x)

G(Q[z](s, t, x))ds, (t, x) ∈ Ec,

ϕ(t, x), (t, x) ∈ E0 ∪ ∂0Ec.

Note that the characteristic g[z] satisfies the integral equation

g[z](τ, t, x) = x+

τ∫

t

ρ(Q[z](s, t, x))ds for τ ∈ [δ[z](t, x), t], (t, x) ∈ Ec. (2.3)

We consider the functional integral system, consisting of (2.3) and

z(t, x) = Fz(t, x), (t, x) ∈ E∗
c . (2.4)

The right-hand side of (2.4) is obtained as in [10, Section 3].

Assumption H0[G]. The function G : E ×X → R is continuous, and it has at most
sub-linear growth in w: there are KG, AG, such that

|G(t, x, w)| ≤ AG +KG‖w‖0 on E ×X.

Application of Gronwall’s inequality to (2.4) leads to the following a priori esti-
mate.

Lemma 2.1. Suppose that Assumptions H0[G], H[ϕ] hold. If z̄ : E∗
c → R is bounded,

and if z̄, g[z̄] (the set of characteristics corresponding to z̄) satisfy (2.3), (2.4), then

|z̄(t, x)| ≤ µ(t) on Ec, where

µ(t) = (p0 +AGt) exp(KGt). (2.5)
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Note that µ is independent of c, 0 < c ≤ a. In the sequel, we will localise our
assumptions on ρ and G using the following notation:

C1.L
ϕ.c [µ] = {z ∈ C1.L

ϕ.c : |z(t, x)| ≤ µ(t) for (t, x) ∈ Ec}

and

X0 = {w ∈ C1.L(D ,R) : ‖w‖0 ≤ µ(a)}.

2.3. PROPERTIES OF CHARACTERISTICS NEAR BOUNDARY

We are now able to state the main results of this section.

Assumption H0[ρ]. The function ρ : E ×X → Rn is, on E × X0, continuous and
bounded uniformly by K. Moreover, there is κ > 0 such that for every j

n∑

k=1

∂xk
φjn(x)ρk(t, x, w) ≥ κ (2.6)

for t ∈ [0, a], x ∈ Uj ∩Ω, and for w ∈ X0, where (φj1, . . . , φjn) are the components of
Φj .

Assumption H0[α]. There is r1 such that, for (t, x) ∈ E,

|α0(t, x)− α0(t̄, x̄)|+ ‖α(t, x)− α(t̄, x̄)‖ ≤ r1 max{|t− t̄|, ‖x− x̄‖}.

Note that (2.6) is a variant of the normal vector condition. It is important for the
well-posedness of the initial-boundary value problem (1.1), (1.2), established by our
next lemma.

Lemma 2.2. Suppose that Assumptions H[ϕ], H[Ω], H0[G], H0[ρ], H0[α] are satisfied.

Given z ∈ C1.L
ϕ.c [µ], there exists a solution g[z](·, t, x) of (2.2) on [δ[z](t, x), c], and if

ξ = δ[z](t, x) > 0 then g[z](ξ, t, x) ∈ ∂Ω. Moreover, every characteristic touches ∂Ω
no more than once, that is,

g[z](τ, t, x) ∈ Ω for τ ∈ (δ[z](t, x), c]. (2.7)

Proof. The existence, up to the boundary, of solutions to (2.2) follows from the the-
orem on classical solutions of initial problems. We prove (2.7). Conversely, suppose
that for some (t, x) ∈ Ec and for some ã, δ[z](t, x) < ã ≤ c, we have

g[z](τ, t, x) ∈ Ω for τ ∈ (δ[z](t, x), ã) and g[z](ã, t, x) ∈ ∂Ω.

Recall that, by Assumption H[Ω], there is j such that g[z](ã, t, x) ∈ Uj . Since Uj is
open and g[z](·, t, x) is continuous, there is also ε > 0 such that

g[z](τ, t, x) ∈ Uj ∩ Ω for τ ∈ [ã− ε, ã).
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By the chain rule,

φjn(g[z](ã, t, x))− φjn(g[z](ã− ε, t, x)) =

ã∫

ã−ε

d

dτ

[
φjn(g[z](τ, t, x))

]
dτ =

=

ã∫

ã−ε

∂xφjn(g[z](τ, t, x)) ∗ ρ(τ, g[z](τ, t, x), zα(τ,g[z](τ,t,x)))dτ.

According to the condition (2.6) of Assumption H0[ρ], the integrand is positive. More-
over, the number φjn(g[z](ã, t, x)) is zero because the n-th component of the image
of ∂Ω through Φj (where g[z](ã, t, x) belongs) vanishes – see Assumption H[Ω], con-
dition (ii). Hence the number φjn(g[z](ã− ε, t, x)) is negative, which contradicts the
condition (ii), just mentioned.

We now present a fact concerning the behaviour of characteristics near the bound-
ary of Ω. This result is important for showing Lipschitz continuity of δ[z](t, x) in z
and in (t, x).

Lemma 2.3. Under the same hypotheses, there is δ̃, 0 < δ̃ ≤ δ, such that the

region Ωδ̃ with the property that if a characteristic trajectory has a point therein,

then every earlier point lies there as well. Precisely, if x ∈ Ωδ̃, then for any j such

that |Φj(x)| < 1/2 (such j exists by the Assumption H[Ω]), and for any t ∈ [0, c],
z ∈ C1.L

ϕ.c [µ], ϕ ∈ C1.L
∂ [p],

g[z](τ, t, x) ∈ Uj for τ ∈ [δ[z](t, x), t].

Proof. The proof is divided into two steps. First, we show that for a subset of Ωδ, any
point lying in it belongs to the same Uj as its certain companion point lying in ∂Ω.

In the second step, the claimed proximity δ̃ of ∂Ω is found.

Step I. Recall that by B we denote the unit ball in (Rn, |·|). Fix x ∈ Ωδ; by Assumption
H[Ω], there is j = j(x) such that |Φj(x)| < 1/2. We will show that

{
y ∈ R

n : |y − x| < 1/(4nM̃)
}
⊂ Uj(x). (2.8)

Suppose the above is not true; take y ∈ Rn \ Uj, such that |y − x| < 1/(4nM̃). Let
y∗ ∈ ∂Uj be the realisation of the distance dist(y, Uj). Note that Φj and Ψj admit
Lipschitz continuous extensions onto Uj and B, respectively; obviously the extensions
map between ∂Uj and ∂B. Denote the extension of Φj by the same symbol, for
simplicity. By the definition of y∗, |y − y∗| ≤ |y − x|, so the triangle inequality yields
2|y − x| ≥ |x− y∗|, and hence

1

2nM̃
> 2|y − x| ≥ |x− y∗| ≥

1

nM̃
|Φj(x)− Φj(y

∗)| ≥
1

nM̃
·
1

2
,

a contradiction.
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Having shown (2.8), our aim is now to find Ωγ ⊂ Ωδ, such b(x) ∈ Uj(x) for any
x ∈ Ωγ , where b(x) ∈ ∂Ω is the realisation of the distance d = dist(x, ∂Ω) (it exists
by precompactness of any bounded subset of ∂Ω).

Define γ = min{δ, 1/(4nM̃)} and let d < γ be the distance just mentioned. The
point b(x) may be approached from within Ω. Take z ∈ Ω close enough to b(x),
|b(x)− z| ≤ (γ − d)/2, so that

|x− z| ≤ |x− b(x)|+ |b(x)− z| = d+ |b(x)− z| ≤ (d+ γ)/2 < γ,

and, by (2.8), x, z ∈ Uj(x) ∩Ω. Hence, with j = j(x), |Φj(x)−Φj(z)| ≤ nM̃ |x− z| ≤

nM̃(d+ γ)/2. Denoting the last bound by q, we may write

|Φj(z)| ≤ |Φj(x)|+ |Φj(x) − Φj(z)| ≤
1

2
+ q < 1.

Repeating the above argument with zn in place of z, such that {zn} converges to b(x),
and then passing to the limit, we obtain |Φj(b(x))| < 1, and hence b(x) ∈ Uj(x).

Step II. Let δ̃ = min{δ, 1/(4nM̃), κ/(2nM̃2K)}, and x ∈ Ωδ̃, t ∈ [0, c], z ∈ C1.L
ϕ.c [µ].

By what we have proved in step I, we may write, for j = j(x),

φjn(x) = |φjn(x) − φjn(b(x))| ≤ M̃‖x− b(x)‖ <
κ

2nM̃K
. (2.9)

Define Γ(τ) = Φj(g[z](τ, t, x)), Γ = (Γ1, . . . ,Γn). The proof is completed by showing
that the curve {Γ(τ), τ < t} cannot escape a finite cone, wholly included in B.

Thanks to the differentiability of Γ, if only t1 < t2 have the property

g[z](τ, t, x) ∈ Uj for τ ∈ [t1, t2], (2.10)

then

|Γ(t2)− Γ(t1)| ≤

t2∫

t1

∣∣∣∣
d

dτ
Φj(g[z](τ, t, x))

∣∣∣∣ dτ ≤ nM̃K(t2 − t1),

Γn(t2)− Γn(t1) =

t2∫

t1

d

dτ
φjn(g[z](τ, t, x))dτ ≥ κ(t2 − t1).

Dividing these inequalities yields

Γ(t2)− Γ(t1) ∈ C =

{
y ∈ R

n : |y| ≤
nM̃K

κ
yn

}
,

whenever (2.10) holds. Recall that g[z](t, t, x) = x (it is just the initial condition for
a characteristic), and hence Γ(t) = Φj(x). Let W denote the closed set

(Γ(t)− C) ∩ {y ∈ R
n : yn ≥ 0} ,
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where Γ(t)−C means an algebraic difference. We claim that the region W is included

in B. Indeed, since inequality (2.9) reads nM̃K
κ Γn(t) <

1
2 , and j = j(x) is so chosen

that |Γ(t)| < 1/2, an easy calculation involving the definition of C and possibly
supported by Figure 1, proves this inclusion.

yn = 0

yn > 0

|y| = 1
2

|y| = 1

Γ(t)

Φ
j (g[z](·, t, x))

Γ(t)

Φj(g[z](δ[z](t, x), t, x))

Fig. 1. Cone Γ(t)+C so placed, that the characteristic may escape from Uj (upper sketch);
cone Γ(t) +C, Γ(t) = (γ1, . . . , γn), with γn small enough to keep the characteristic

inside Uj , all way long to the left, up to δ[z](t, x) (lower sketch).
In both cases, the gray set is W .

Now, suppose that g[z](τ∗, t, x) 6∈ Uj for some τ∗ ∈ [δ[z](t, x), t), meaning that Γ
is not defined at τ∗. But Γ(t) ∈ W , and W is well-separated from ∂B. Thus there
exists t1 ∈ (τ∗, t), satisfying

Γ(t1) ∈ B \W and Γ(τ) ∈ B for τ ∈ [t1, t].

Clearly, Γ(t1) 6∈ W and Γn(t1) ≥ 0. Concluding, for t2 = t, we have (2.10) together
with the relation Γ(t2)− Γ(t1) 6∈ C, which is impossible.
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3. REGULARITY OF CHARACTERISTICS

Assumption H[ρ]. Assumption H0[ρ] is satisfied and, for (t, x) ∈ E, w ∈ X0, the
derivative ∂xρ(t, x, w) and the Fréchet derivative ∂wρ(t, x, w) exists. Furthermore,
there are M , L, such that for (t, x) ∈ E, w ∈ X0, and for any Lipschitz continuous
h : D → R,

1. the derivatives are bounded, in the sense that

‖∂xρ(t, x, w)‖ ≤M(1 + ‖Dw‖0), ‖∂wρ(t, x, w)h‖ ≤M‖h‖0,

2. the Fréchet derivative is Lipschitz continuous in w: for any w̄ ∈ X0,

‖∂wρ(t, x, w)h− ∂wρ(t, x, w̄)h‖ ≤ L‖h‖0 ‖w − w̄‖0,

3. with respect to the topology induced by the norm ‖ · ‖C1(D,R), ∂xρ(t, x, w) is con-
tinuous in w,

4. ∂xρ(t, x, w), ∂wρ(t, x, w)h, are continuous in (t, x).

Assumption H[α]. The function α satisfies Assumption H0[α] and is differentiable
on E, Dα is continuous, and there is r2 such that

‖Dα(t, x) −Dα(t, x̄)‖ ≤ r2‖x− x̄‖

for (t, x), (t, x̄) ∈ E.

Define, for u ∈ C(E∗
c ,R

1+n), u = (u0, ū), ū = (u1, . . . , un), and for (t, x, w) ∈
Ec ×X ,

K[u](t, x, w) = ∂xρ(t, x, w) + ∂wρ(t, x, w)
(
uα(t,x) ∗ ∂xα(t, x)

)
,

where the Hale operator is understood component-wise.
Since the above two Assumptions guarantee the continuity of K[Dz](t, x, zα(t,x))

in (t, x), a classical theorem on differentiation of solutions with respect to initial data
ensures that Dg[z] exists and fulfils the integral equation

Dg[z](τ, t, x) =
[
−ρ(t, x, zα(t,x))

∣∣ I
]
+

τ∫

t

K[Dz](Q[z](s, t, x))∗Dg[z](s, t, x)ds, (3.1)

where
[
− ρ(t, x, zα(t,x))

∣∣ I
]

is the concatenation of the matrix −ρ(t, x, zα(t,x)) with
the n-by-n identity matrix.

As is easily seen from the definition of Fz, its regularity in (t, x) is not higher than
this of g[z] and δ[z]. Additionally, we need them to be Lipschitz continuous in z, for
the sake of proving that F be a contraction.

Lemma 3.1. If Assumptions H[ϕ], H[Ω], H0[G], H[ρ], H[α] are satisfied, then for

any z ∈ C1.L
ϕ.c [µ], the characteristics g[z](·, t, x) are unique, and on

{(τ, t, x) : (t, x) ∈ Ec, τ ∈ (δ[z](t, x), c)}
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the derivative Dg[z](τ, t, x) exists, is continuous in (t, x), and bounded uniformly in

(τ, t, x).

Proof. Put d = ‖Dz‖C(E∗

c ,R
1+n). Whereas uniqueness follows by classical arguments

(due to Assumption H[ρ]), a uniform bound for ‖Dg[z]‖ may be found by applying
the Gronwall lemma to

‖Dg[z](τ, t, x)‖ ≤ A1 + (M +B1d)

∣∣∣∣∣∣

t∫

τ

‖Dg[z](s, t, x)‖ ds

∣∣∣∣∣∣
,

A1 = 1 +K, B1 = 2Mr1.

Of course, g[z](τ, t, x) is continuous in (t, x); since (3.1) is linear, and its kernel (as
well as the free term) is continuous in (t, x), so is Dg[z](τ, t, x).

Lemma 3.2. Under the same hypotheses, for any z ∈ C1.L
ϕ.c [µ],

δ[z] ∈ C(Ec) ∩ C
1(U [z]) and ‖Dδ[z]‖ ≤ (n+ 1)κ−1C[z] on U [z],

where U [z] = {(t, x) ∈ Ec : δ[z](t, x) > 0} and C[z] is a bound depending on z,

C[z] = sup {‖Dg[z](τ, t, x)‖ : (t, x) ∈ Ec, τ ∈ (δ[z](t, x), c)} .

Proof. Fix z ∈ C1.L
ϕ.c [µ]. Once it is done, we may introduce the notation f0 = δ[z].

We first prove that f0 ∈ C1(U [z]). Fix now (t̄, x̄) ∈ U [z], and take τ such that Ωδ̃/2
contains the point g[z](τ, t̄, x̄); denote the point briefly by y. Take also j such that
y ∈ Uj and |Φj(y)| < 1/2. Let ξ = φjn(y) > 0. Since g[z](τ, ·) and φjn are continuous,
and Uj is open, there is ε > 0 such that, whenever |t− t̄|+ ‖x− x̄‖ ≤ ε,

|g[z](τ, t̄, x̄)− g[z](τ, t, x)| ≤ δ̃/2

and
g[z](τ, t, x) ∈ Uj and φjn(g[z](τ, t, x)) ≥ ξ/2.

Consequently, by Lemma 2.3, g[z](s, t, x) ∈ Uj for s ∈ [δ[z](t, x), τ ] provided (t, x) is
close to (t̄, x̄). This shows the existence of a neighbourhood V of (t̄, x̄) such that the
family fη : V → R, 0 ≤ η ≤ ξ/2, is defined by

φjn(g[z](fη(t, x), t, x)) = η; (3.2)

the uniqueness of this definition follows from the monotonicity (see (2.6)) of
φjn(g[z](·, t, x)) on the left of τ . By the same argument, this family of functions is
uniformly continuous in the parameter η: |fη(t, x)− fη̃(t, x)| ≤ κ−1|η − η̃|. Moreover,
for η 6= 0, the implicit function theorem may be applied to (3.2), implying continuity
of fη and of all its partial derivatives: for i = 0, 1, . . . , n,

∂xi
fη(t, x) = −

∑n
k=1 ∂xk

φjn(g[z](fη(t, x), t, x)) · ∂xi
gk[z](fη(t, x), t, x)∑n

k=1 ∂xk
φjn(g[z](fη(t, x), t, x)) · ρk(Q[z](fη(t, x), t, x))

, (3.3)
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with ∂t denoted by ∂x0
for simplicity. Previous arguments, together with Lemma 3.1,

lead to equicontinuity and uniform boundedness (by κ−1M̃C[z]) on V of those partial
derivatives. With the aid of the Arzelà-Ascoli theorem, it is easy to see that f0 is
continuously differentiable on V and its partial derivatives are bounded by κ−1M̃C[z].

What remains is to prove the continuity of f0 on Ec, which may be done along
the steps of the proof of Lemma 2.2 in [10].

4. A COMPATIBILITY CONDITION AND AN A PRIORI ESTIMATE OF Dz

The following compatibility condition for the problem (1.1), (1.2) will be indispensable
in the proof of continuity of the derivative of Fz.

Assumption Hc[ϕ, ρ,G ]. On the set ∂0E, the right-hand side of (1.1) depends solely
on ϕ. Precisely, the equivalence, on ∂0E,

ρ(t, x, zα(t,x)) = ρ(t, x, z̄α(t,x)), G(t, x, zα(t,x)) = G(t, x, z̄α(t,x))

holds for any z, z̄ ∈ C1.L
ϕ.a [d]. Moreover, ϕ satisfies

∂tϕ(t, x) + ϕx(t, x) ∗ ρ(t, x, zα(t,x)) = G(t, x, zα(t,x)) on ∂0E, (4.1)

where

ϕx(t, x) =

{∑n−1
i=1 ∂yiFj(t,Φj(x))∂xφji(x) for (t, x) ∈ ∂0E,

∂xϕ(0, x) for x ∈ Ω.
(4.2)

and Fj is defined by (2.1). Additionally, if b0 > 0, then

∂tϕ(t, x) + ∂xϕ(t, x) ∗ ρ(t, x, zα(t,x)) = G(t, x, zα(t,x)) on {0} × Ω. (4.3)

Assumption H[G]. Assumption H0[G] is satisfied and, for (t, x) ∈ E, w ∈ X0, the
derivative ∂xG(t, x, w) and the Fréchet derivative ∂wG(t, x, w) exists. Furthermore,
for the same M and L as in Assumption H[ρ], we have for (t, x) ∈ E, w ∈ X0, and
for any Lipschitz continuous h : D → R:

1. the derivatives are bounded, in the sense that

‖∂xG(t, x, w)‖ ≤M(1 + ‖Dw‖0), ‖∂wG(t, x, w)h‖ ≤M‖h‖0,

2. the Fréchet derivative is Lipschitz continuous in w: for any w̄ ∈ X0,

‖∂wG(t, x, w)h − ∂wG(t, x, w̄)h‖ ≤ L‖h‖0 ‖w − w̄‖0,

3. with respect to the topology induced by the norm ‖ · ‖C1(D,R), ∂xG(t, x, w) is
continuous in w,

4. ∂xG(t, x, w), ∂wG(t, x, w)h, are continuous in (t, x).
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Assumption H[c]. With the constants K, AG, KG, M , M , r1, p1, as in the above
assumptions on ρ, G, ϕ and α, and with

A1 = 1 +K, A2 = AG +KGµ(a), B1 =M(3 + r1),

A3 = (M +B1A2)A1, η̃ = max

{
M +B1A2 +B1A1

2A3
,

√
B1

A3

}
, η = p1A1,

the time interval (0, c), for a solution, satisfies c < 1
A3(η̃η+1) .

Lemma 4.1. Under the above Assumptions, and the preceding ones, there are C1 and

C2, such that for any solution (z, g[z]), z ∈ C1.L
ϕ.c [µ], to the system (2.3), (2.4)

‖Dg[z](τ, t, x)‖ ≤ C1 and ‖Dz(t, x)‖ ≤ C2 (4.4)

for (t, x) ∈ Ec, τ ∈ (δ[z](t, x), c).

Proof. Define, for u ∈ C(E∗
c ,R

1+n), u = (u0, ū), ū = (u1, . . . , un), and for (t, x, w) ∈
Ec ×X ,

G[u](t, x, w) = ∂xG(t, x, w) + ∂wG(t, x, w)
(
uα(t,x) ∗ ∂xα(t, x)

)
.

Let us first observe that, for any z ∈ C1.L
ϕ.c [µ], G[Dz](t, x, zα(t,x)) is bounded in (t, x)

on Ec by Assumption H[G]. This allows for differentiation under the integral sign in
(2.4), leading to an integral formula for DFz.

To this end, fix z ∈ C1.L
ϕ.c [µ] and (t, x) ∈ Ec. Once it is done, we may introduce the

notation g = g[z](·, t, x) and δ = δ[z](t, x). Let us extend the definition (4.2) of ϕx
by setting ϕx(0, x) = ∂xϕ(0, x) on Ω. Due to the compatibility condition Hc[ϕ, ρ,G ]
and thanks to continuity of δ[z], and also from (the last line of) Assumption H[ϕ], for
(t, x) ∈ Ec

DFz(t, x) = ϕx(δ, g(δ)) ∗Dg[z](δ, t, x) +
[
G(t, x, zα(t,x))

∣∣ 0
]
+

+

t∫

δ[z](t,x)

G[Dz](Q[z](s, t, x)) ∗Dg[z](s, t, x) ds, (4.5)

where
[
G(t, x, zα(t,x))

∣∣ 0
]
=

(
G(t, x, zα(t,x)), 0, . . . , 0

)
∈ R1+n.

Let z = Fz, z ∈ C1.L
ϕ.c [µ]. Thanks to the regularity of z, the function u : [0, c) → R

defined by
u(t) = sup {‖Dz(s, x)‖ : s ∈ (0, t], x ∈ Ω}

is continuous, even if Ω is unbounded. Following the argument in the proof of
Lemma 3.1, we get

‖Dg[z](τ, t, x)‖ ≤ A1 exp





∣∣∣∣

t∫

τ

(M +B1u(s)) ds

∣∣∣∣



 .
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Denote the above right-hand side by q(τ, t). Using it to estimate Dg[z](δ, t, x) and
‖Dg[z](s, t, x)‖ in (4.5), we obtain u(t) ≤ A2 + ψ(t), where

ψ(t) = p1q(0, t) +

t∫

0

(M +B1u(s))q(s, t) ds.

An easy calculation yields ψ(0) = η and

ψ′(t) = (M +B1u(t))ψ(t) + (M +B1u(t))A1 ≤

≤ (M +B1A2 +B1ψ(t))ψ(t) + (M +B1A2 +B1ψ(t))A1 ≤ A3(1 + η̃ψ(t))2.

Solving the quadratic differential inequality, as in [25], gives

‖Dz(t, x)‖ ≤ A2 +
1

η̃

(
η̃η + 1

1−A3(η̃η + 1)t
− 1

)
for t ∈

(
0,

1

A3(η̃η + 1)

)
. (4.6)

Remark 4.2. Note that (4.6) is the only reason to keep c small. Consequent estimates
of Lipschitz constants for DFz , Dg[z] do not rely on the size of time interval. Neither
do the contractivity of F, due to the application of the Bielecki norm.

Let us write

C1.L
ϕ.c [µ;C1] = {z ∈ C1.L

ϕ.c : |z(t, x)| ≤ µ(t), ‖Dz(t, x)‖ ≤ C1 for (t, x) ∈ Ec}

and
X1 = {w ∈ C1.L(D ,R) : ‖w‖0 ≤ µ(a), ‖Dw‖0 ≤ C1}.

The following result on Lipschitz continuity in z is important for the application
of the Banach fixed-point theorem to F. We give it without proof; one analogous to
this of Lemma 3.5 in [12] works.

Lemma 4.3. Under the same hypotheses, for z ∈ C1.L
ϕ.c [µ;C1] and for z̄ ∈ C1.L

ϕ̄.c [µ;C1],
with z̄(t, x) = ϕ̄(t, x) on E0 ∪ ∂0Ec, and ϕ̄ which satisfies Assumption H[ϕ] with the

same p1 as ϕ does, we have, for any (t, x) ∈ Ec, and with max{δ[z](t, x), δ[z̄](t, x)} ≤
τ < c,

‖g[z](τ, t, x)− g[z̄](τ, t, x)‖ ≤ Ā

∣∣∣∣

τ∫

t

‖z − z̄‖C(E∗

s)
ds

∣∣∣∣,

|δ[z](t, x)− δ[z̄](t, x)| ≤ M̃Āκ−1

t∫

0

‖z − z̄‖C(E∗

s)
ds,

where Ā = 2M exp(cKρ), Kρ =M +B1C1.



306 Wojciech Czernous

5. EXISTENCE AND CONTINUOUS DEPENDENCE

Assumption H[ρ,G]. The Assumptions H[ρ], H[G] are fulfilled and ρ,G are Lipschitz
continuous in t with constant M . Moreover, for any (t, x), (t̄, x̄) ∈ E, and for any w,
w̄ ∈ X1,

‖∂xρ(t, x, w) − ∂xρ(t, x̄, w)‖ ≤ L(1 + |Dw|L) ‖x− x̄‖,

‖∂xG(t, x, w) − ∂xG(t, x̄, w)‖ ≤ L(1 + |Dw|L) ‖x− x̄‖,

‖∂xρ(t, x, w) − ∂xρ(t, x, w̄)‖ ≤ L‖w − w̄‖1,

‖∂xG(t, x, w) − ∂xG(t, x, w̄)‖ ≤ L‖w − w̄‖1,

and, additionally, with any Lipschitz continuous h : D → R,

‖∂wρ(t, x, w)h − ∂wρ(t, x̄, w)h‖ ≤ L(‖h‖0 + |h|C0.L(D,R)) ‖x− x̄‖,

|∂wG(t, x, w)h − ∂wG(t, x̄, w)h| ≤ L(‖h‖0 + |h|C0.L(D,R)) ‖x− x̄‖.

Define

C1.L
ϕ.c [µ;C1;L1] = {z ∈ C1.L

ϕ.c [µ;C1] : |Dz|C0.L(Ec,R1+n) ≤ L1}.

Lemma 5.1. Under the above Assumptions, and the preceding ones, any solution

(z, g[z]) to the system (2.3), (2.4), has the following property: if z ∈ C1.L
ϕ.c [µ;C1], then

z ∈ C1.L
ϕ.c [µ;C1;L1] for some L1 depending on bounds assumed or already proved.

Proof. Unlike in estimating ‖Dz‖, the supremum, for which we construct an integral
inequality, is not necessarily a continuous function of the time variable. Let

f1(t, t̄, x, x̄) =

{
‖Dz(t,x)−Dz(t̄,x̄)‖
max{|t−t̄|,‖x−x̄‖} if 0 < t ≤ t̄ < c, x 6= x̄, x, x̄ ∈ Ω,

0 for all other (t, x), (t̄, x̄) ∈ Ec.

Note that functions f1(·, t̄, x, x̄), where (t, x) ∈ Ec, (t̄, x̄) ∈ Ec, are measurable (in
fact, piecewise absolutely continuous). Hence there is (see [15]) a measurable function
q1 : (0, c) → R+, uniquely determined up to null sets by the two properties that:

1. for every (t, x) ∈ Ec, (t̄, x̄) ∈ Ec, q1(t) ≥ f1(t, t̄, x, x̄) for almost all t,
2. if q̄1 is another function with this property, then q̄1 ≥ q1 for almost all t.

Function q1 is called an essential supremum of the class

{f1(·, t̄, x, x̄) : t̄ ∈ (0, c), x, x̄ ∈ Ω}.

Similarly, for each t ∈ (0, c), let q2(·, t) : (0, c) → R+ be an essential supremum of the
class

{f2(·, t, t̄, x, x̄) : t̄ ∈ (0, c), x, x̄ ∈ Ω} ,

where

f2(τ, t, t̄, x, x̄) =





‖Dg[z](τ,t,x)−Dg[z](τ,t̄,x̄)‖
max{|t−t̄|,‖x−x̄‖} , if (τ, t, t̄, x, x̄) ∈ Θ[z],

0 for all other τ ∈ (0, c)

and (t, x), (t̄, x̄) ∈ Ec.



Classical solutions of mixed problems for quasilinear first order PFDEs. . . 307

and

Θ[z] = {(τ, t, t̄, x, x̄) ∈ (0, c)3 × Ω2 : max{δ[z](t, x), δ[z](t̄, x̄)} ≤ τ ≤ t ≤ t̄,

(t, x) 6= (t̄, x̄)}.

Then, for (τ, t, t̄, x, x̄) ∈ Θ[z],

‖Dg[z](τ, t, x)−Dg[z](τ, t̄, x̄)‖

max{|t− t̄|, ‖x− x̄‖}
≤ C


1 +

t∫

τ

q1(s) + q2(s, t)ds


 , (5.1)

where C is a suitable constant; we shall use this notation subsequently. Note that
the value of C may differ from line to line. Denote the right-hand side of the above
by ψ(τ, t). Then q2(s, t) ≤ ψ(s, t) almost everywhere in s, on the domain of ψ; the
inequality follows right from the definition of q2. By use of the Gronwall lemma,

ψ(τ, t) ≤ C


1 + (t− τ) +

t∫

τ

q1(s) ds


 exp(C(t− τ)) ≤ C


1 +

t∫

τ

q1(s) ds


 . (5.2)

Take (t̄, x̄) 6= (t, x) ∈ Ec, t ≤ t̄, and let ζ = max{δ[z](t, x), δ[z](t̄, x̄)}. We may now
use (5.1), (5.2) in estimating the difference ‖DFz(t, x)−DFz(t̄, x̄)‖ written with the
aid of (4.5), obtaining

‖DFz(t, x)−DFz(t̄, x̄)‖

max{|t− t̄|, ‖x− x̄‖}
≤ C


1 +

t∫

0

q1(s) ds+

t∫

0

t∫

s

q1(ξ) dξ ds


 .

Again, abbreviating the right-hand side to φ̃(t) and using q1 ≤ φ̃ a.e., we get, for all
t ∈ (0, c),

φ̃(t) ≤ φ(t), where φ(t) = C


1 +

t∫

0

φ̃(s) ds+

t∫

0

t∫

s

φ̃(ξ) dξ ds


 .

Hence

φ(0) = C and φ′(t) = Cφ̃(t) + C

t∫

0

φ̃(t) ds ≤ C(1 + t)φ(t).

It follows easily that φ(t) ≤ C exp(C(c+ c2/2)) = L1. This completes the proof.

Theorem 5.2. Let all the preceding Assumptions hold. Then there exists exactly one

solution z̄ ∈ C1.L
ϕ.c [µ;C1;L1] of problem (1.1), (1.2). Moreover, there is Λc ∈ R+ such

that for any ψ satisfying Assumptions H[ϕ], Hc[ϕ, ρ,G ],

‖z̄ − v‖C(E∗

t )
≤ Λc‖ϕ− ψ‖C(E0∪∂0Et)

, 0 ≤ t ≤ c, (5.3)

where v ∈ C1.L
ψ.c [µ;C1;L1] is the solution of (1.1), (1.2) with ϕ replaced by ψ.
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Proof. Consider the space C1.L
ϕ.c [µ;C1;L1]; we first prove that F maps it into itself.

Indeed, the bounds required for |Fz|, ‖DFz‖, and for |DFz|C0.L(Ec,R1+n) are already
shown, and the fact that Fz is a continuous extension of ϕ, is a simple consequence of
the definition (2.4); it remains to prove that this extension is of class C1. From (3.1),
(4.5), and from the compatibility condition (4.1) we obtain for (t, x) ∈ ∂0E,

lim
(t̄,x̄)→(t,x)

(t̄,x̄)∈Ec

DF[z](t̄, x̄) = ϕx(t, x) ∗Dg[z](t, t, x) +
[
G(t, x, zα(t,x))

∣∣ 0
]
=

= ϕx(t, x) ∗
[
− ρ(t, x, zα(t,x))

∣∣ I
]
+
[
G(t, x, zα(t,x))

∣∣ 0
]
= (∂tϕ(t, x), ϕx(t, x)).

If b0 > 0, then similar arguments, involving (4.3), apply to the case (t, x) ∈ {0} × Ω.
To complete the proof, we would like to point out that equality ∂xFz(0, ·) = ∂xϕ(0, ·)
follows easily from (3.1), (4.5).

Note that our space is a closed subset of C(E∗
c ,R). To prove that there exists

exactly one z̄ therein, satisfying (2.4), we use the Banach fixed point theorem, with
the aid of Bielecki norm (Gronwall lemma yields (5.3)); for details, see a similar proof
in [10], Theorem 4.1.
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