PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluorouracyl – frakcja wdychalna : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Fluorouracil − inhalable fraction : documentation of proposed values of occupational exposure limits (OELs)
Języki publikacji
PL
Abstrakty
PL
Fluorouracyl jest lekiem cytostatycznym. Narażenie zawodowe na fluorouracyl występuje podczas jego wytwarzania, konfekcjonowania i pakowania oraz stosowania w codziennej praktyce leczniczej oddziałów szpitalnych. Maksymalne stężenie fluorouracylu w powietrzu środowiska pracy techników farmacji i pielęgniarek wynosiło 82,26 x 10-6 mg/m³ . W badaniach narażenia pracowników zakładów farmaceutycznych zajmujących się konfekcjonowaniem i wytwarzaniem fluorouracylu w latach 1986-1988 wykazano obecność fluorouracylu w powietrzu w stężeniach do 75 µg/m³ podczas wykonywanej przez pracownika czynności ważenia produktu. Główne skutki toksycznego działania fluorouracylu opisano u leczonych pacjentów i obejmowały one supresję szpiku kostnego i toksyczność żołądkowo-jelitową. Miejscowe zastosowanie roztworów lub kremów zawierających 1 ÷ 5% fluorouracylu powodowało: podrażnienie skóry, zapalenie skóry i reakcje alergiczne skóry. Podczas stosowania fluoroura cylu w postaci aerozolu u pacjenta w dawce leczniczej 2,5 mg/kg mc./dzień stwierdzono zapalenie błony śluzowej jamy ustnej oraz zapalenie głośni. Producenci fluorouracylu w kartach charakterystyki wskazują na możliwość wystąpienia skutków zdrowotnych u pracowników, obejmujących działanie ogólnoustrojowe po długotrwałym narażeniu drogą oddechową i przez skórę przejawiające się zahamowaniem czynności szpiku kostnego oraz działaniem kardiotoksycznym. Skutki odległe działania fluorouracylu obejmują głównie działanie genotoksyczne stwierdzane u pielęgniarek onkologicznych oraz występowanie wad urodzeniowych u dzieci pacjentek leczonych tym lekiem. Eksperci IARC w 1987 r. ocenili, że brak jest dowodów na działanie rakotwórcze fluorouracylu u ludzi i zwierząt i zaliczyli go do grupy 3. W przypadku zwierząt najbardziej wrażliwym na działanie fluorouracylu gatunkiem był pies. Minimalna dawka toksyczna dla psa po podaniu fluorouracylu per os wynosiła 5 mg/kg mc. W badaniu na chomikach syryjskich, które narażano na aerozol fluorouracylu w dawce 1,45 mg/kg mc. oraz 2,08 mg/kg mc., nie obserwowano zmian związanych z narażeniem. Krytycznym skutkiem działania fluorouracylu na zwierzęta jest działanie reprotoksyczne. Zaproponowano przyjąć wartość najwyższego dopuszczalnego stężenia (NDS) fluorouracylu na poziomie stężenia ekwiwalentnego do 0,1% najmniejszej znalezionej w piśmiennictwie dawki terapeutycznej u ludzi wynoszącej 5 mg/kg mc. Przyjęto dodatkowo współczynnik niepewności na poziomie 10 związany z odległymi skutkami narażenia, tj. działaniem genotoksycznym i reprotoksycznym. Zaproponowano wartość NDS fluorouracylu – frakcji wdychalnej na poziomie 0,0035 mg/m³ . Nie ma podstaw merytorycznych do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh). Nie ma podstaw do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB). Zgodnie z kryteriami przyjętymi przez Zespół Ekspertów ds. Czynników Chemicznych należy zastosować notację „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową oraz „Ft” – substancja o działaniu szkodliwym na rozrodczość. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Fluorouracil is a cytostatic drug. Occupational exposure to fluorouracil occurs during its manufacture, packaging and use in hospital wards in a daily treatment practice. The maximum concentration of fluorouracil in workplace air of pharmacy technicians and nurses was 82.26 × 10-6 mg/m³ . Exposure tests of employees of pharmaceutical plants dealing in packaging and production of fluorouracil in 1986-1988, showed the presence of fluorouracil in the air in concentrations up to 75 μg/m³ during product weighing operations. The main effects of fluorouracil toxicity have been described in treated patients and they include bone marrow suppression and gastrointestinal toxicity. Topical application of solutions or creams containing 1–5% fluorouracil resulted in skin irritation, dermatitis and allergic skin reactions. During the use of fluorouracil in the form of an aerosol, a patient at the therapeutic dose of 2.5 mg/kg/day showed oral mucositis and glottis. Fluorouracil manufacturers indicate in safety data sheets the possibility of health effects in workers including systemic effects after prolonged exposure through the respiratory system and through the skin, manifested by bone marrow suppression and cardiotoxicity. Long-term effects of fluorouracil include mainly genotoxic effects found in oncological nurses and occurrence of birth defects in children of patients treated with this drug. In 1987 IARC experts estimated that there was no evidence of carcinogenicity of fluorouracil in humans and animals, and ranked it in group 3. In the case of animals, the dog was the most sensitive to fluorouracil. The minimum toxic dose for a dog after oral administration of fluorouracil was 5 mg/kg. In a study on Syrian hamsters, which were exposed to a fluorouracil aerosol at a dose of 1.45 mg/kg and 2.08 mg/kg, no changes related to exposure were observed. The reprotoxic effect is the critical effect of fluorouracil in animals. It was proposed to adopt the MAC value of fluorouracil at the concentration equivalent to 0.1% of the lowest therapeutic dose in the literature found in humans of 5 mg/kg. An uncertainty factor at level 10 associated with long-term effects of exposure, i.e., genotoxic and reprotoxic effects, was also adopted. A MAC value of fluorouracil has been proposed – inhalable fraction of 0.0035 mg/m³ . There are no data to determine the short-term value. There are no grounds to establish the concentration limit value in biological material. According to the criteria adopted by the Expert Group for Chemical Agents , the term “skin” should be used – the absorption of substances through the skin may be as important as in the case of inhalation and “Ft” - substance harmful to reproduction. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Rocznik
Strony
49--81
Opis fizyczny
Bibliogr. 173 poz., tab.
Twórcy
  • Instytut Medycyny Pracy im. prof. dr. med. Jerzego Nofera 91-348 Łódź, ul. św. Teresy od Dzieciątka Jezus POLAND
Bibliografia
  • 1. Accord (2014). Fluorouracil Accord, 50 mg/ml, roztwór do wstrzykiwań lub infuzji. Charakterystyka produktu leczniczego [http://chpl.com.pl/data_files/2014-04-23_fluorouracil_accord_var_024_spc.pdf].
  • 2. Alfa Aesar SDS (2009). 5-Fluorouracil. Safety Data Sheet. Francja (Karta charakterystyki).
  • 3. Alter P., Herzum M., Soufi M., Schaefer JR., Maisch B. (2006). Cardiotoxicity of 5fluorouracil. Cardiovasc. Hematol. Agents Med. Chem. 4(1), 1–5.
  • 4. Anada H., Nakamura N., Marumo H. (1974). Studies on the metabolic fate of 5-fluorouracil in the oral administration. J. Pharm. Soc. Jpn. 94, 1131–1138 (abstrakt) [publication in Japanese].
  • 5. Apollo Scientific SDS (2012). 5-Fluorouracil. Safety Data Sheet. UK (Karta charakterystyki).
  • 6. Baza leków (2017). Fluorouracyl (opis profesjonalny). Medycyna Praktyczna [dostęp: 7.08.2017; https://bazalekow.mp.pl/ leki/doctor_subst.html?id=329].
  • 7. Benaryeh B. (2017). The Case: 5-Fluorouracil Toxicity. Small Animal Medicine, Surgery, and Emergency at University of Pennsylvania [dostęp: 6.08.2017; https://www.cliniciansbrief. com/article/case-5-fluorouracil-toxicity].
  • 8. Berenbaum M.C. (1979). The immunosuppressive effects of 5-fluorocytosine and 5fluorouracil. Chemotherapy 25(1), 54–59.
  • 9. Bernadou J., Armand J.P., Lopez A., Malet-Martino M.C., Martino R. (1985). Complete urinary excretion profile of 5-fluorouracil during a six-day chemotherapeutic schedule, as resolved by 19F nuclear magnetic resonance. Clin. Chem. 31, 846–848.
  • 10. BioWORLD SDS (2006). 5-Fluorouracil. Safety Data Sheet. USA (Karta charakterystyki).
  • 11. Błaszczak-Świątkiewicz K., Olszewska P., Mikiciuk-Olasik E. (2013). Zastosowanie nanocząsteczek w leczeniu i diagnostyce nowotworów [Applications of nanoparticles in cancer treatment and diagnosis]. NOWOTWORY Journal of Oncology 63(4), 320–330.
  • 12. Bollag V.W. (1957). Tierexperimentelle Untersuchungen mit dam Cytostaticum 5-Fluorouracil [Dam Animal Studies with Cytostaticum 5-Fluorouracil]. Schweiz. Med. Wchn Schr. 87, 61–71 [publication in German].
  • 13. Bridge M.F., Melamed M.R. (1972). Leukocyte chromosome abnormalities in advanced nonhematopoietic cancer. Cancer Res. 32, 2212–2220.
  • 14. Buur A., Bundgaard H. (1985). Prodrugs of 5-fluorouracil. III. Hydrolysis kinetics in aqueous solution and biological media, lipophilicity and solubility of various 1-carbamoyl derivatives of 5-fluorouracil. Int. J. Pharm. 23, 209–222 [https://www. sciencedirect.com/science/article/pii/0378517385900109].
  • 15. Castiglia L., Miraglia N., Pieri M., Simonelli A., Basilicata P., Genovese G., Guadagni R., Acampora A., Sannolo N., Scafarto MV. (2008). Evaluation of occupational exposure to antiblastic drugs in an Italian hospital oncological department. J. Occup. Health 50, 48–56.
  • 16. Cavalli F., Kaye S.B., Hansen H.H., Armitage J.O., Piccart- -Gebhart M.J. (2009). Textbook of Medical Oncology. 4th Ed. CRC Press.
  • 17. Cayman Chemical Company SDS (2013). 5-Fluorouracil. Safety Data Sheet, USA (Karta charakterystyki).
  • 18. Chabner B.A. (1982). Pyrimidine antagonists [W:] Pharmacologic principles of cancer treatment. [Red.] B. Chabner. W.B. Saunders Co., Philadelphia, 183–212.
  • 19. Chat S., Murphy M.L. (1968). The teratogenic effects of the recent drugs active in cancer chemotherapy. Adv. Teratol. 3, 181–237.
  • 20. Chaudhuri N.K., Mukherjee K.L., Heidelberger C. (1959). Studies on fluorinated pyrimidines. VII. The degradative pathway. Biochem. Pharmacol. 1(4) 328–341.
  • 21. Cherrick H.M., Weissman D. (1974). Effects of topically applied 5-fluorouracil in the Syrian hamster. J. Invest. Dermatol. 63, 284–286.
  • 22. Collins J.M. (1985). Pharmacokinetics of 5-fluorouracil infusions in the rat. Comparison with man and other species. Cancer Chemother. Pharmacol. 14, 108–111.
  • 23. Collins J.M., Dedrick R.L., King F.G., Speyer J.L., Myers C.E. (1980). Nonlinear pharmacokinetic models for 5-fluorouracil in man: intravenous and intraperitoneal routes. Clin. Pharmacol. Ther. 28, 235–246.
  • 24. Connor T.H., DeBord G., Pretty J.R. (2010). Evaluation of antineoplastic drug exposure of health care workers at three university-based US cancer centers. Journal of Occupational and Environmental Medicine 52(10), 1019–1027.
  • 25. Connor T.H., Lawson C.C., Polovich M., McDiarmid M.A. (2014). Reproductive Health Risks Associated with Occupational Exposures to Antineoplastic Drugs in Health Care Settings: A Review of the Evidence. J. Occup. Environ. Med. 56(9), 901–910.
  • 26. Covey J.M., Straw J.A. (1983). Nonlinear pharmacokinetics of thymidine, thymine, and fluorouracil and their kinetic interactions in normal dogs. Cancer Res. 43(10), 4587–4595.
  • 27. Danhauser L.L., Rustum Y.M. (1979). A method for continuous drug infusion in unrestrained rats: its application in evaluating the toxicity of 5-fluorouracil/thymidine combinations. J. Lab. Clin. Med. 93, 1047–1053.
  • 28. Davis H.L. Jr., Prout M.N., Mc Kenna P.J., Cole D.R., Korbitz B.C. (1973). Acute leukemia complicating metastatic breast cancer. Cancer 31, 543–546.
  • 29. Dawson R.M.C., Elliott D.C., Elliott W.H., Jones K.M. (1986). Data for Biochemical Research. 3rd ed. Oxford University Press. New York, 269.
  • 30. De Werk Neal A., Wadden R.A., Chiou W.L. (1983). Exposure of hospital workers to aireborne antineoplastic agents. Am. J. Hosp. Pharm. 40, 597–601.
  • 31. Dechant C., Baur M., Bock R. (2012). Acute reversible heart failure caused by coronary vasoconstriction due to continuous 5-fluorouracil combination chemotherapy. Case Reports in Oncology 5(2), 296–301.
  • 32. Deniz K., O’Mahony S., Ross G., Purushotham A. (2003). Breast cancer in women after treatment for Hodgkin’s disease. The Lancet Oncology 4, 207–214.
  • 33. Dołęgowska B., Ostapowicz A., Stańczyk-Dunaj M., Błogowski W. (2013). Badania przesiewowe poprzedzające chemioterapię 5-fluorouracylem [The screening methods preceding 5-FU-based chemotherapy]. Postępy Polskiej Medycyny i Farmacji [Advances in Polish Medicine and Pharmacological Sciences] 3(1), 17–27.
  • 34. Dorman D.C., Coddington K.A., Richardson R.C. (1990). 5-Fluorouracil Toxicosis in the Dog. J. Vet. Intern. Med. 4(5), 254–257.
  • 35. Duschinsky R., Pleven E., Heidelberger C. (1957). The synthesis of 5-fluoropyrimidines. J. Am. Chem. Soc. 79(16), 4559–4560.
  • 36. ECHA (2017a). European Chemical Agency [dostęp: 7.08.2017; https://echa.europa.eu/information-on-chemicals/ cl-inventory-database/-/discli/details/122214].
  • 37. ECHA (2017b) [https://echa.europa.eu/pl/registration-dossier/-/registered-dossier/10855/1].
  • 38. Eherts D. (2004). Control banding from the pharma perspective. Staying ahead of the regulation, society of chemical hazard communication. SCHC FALL 2004 Meeting, October 26–27, Arlington, VA.
  • 39. EMD Millipore Corporation SDS (2013). 5-Fluorouracil. Safety Data Sheet. UK (Karta charakterystyki).
  • 40. Ensminger W.D., Rosowsky A., Raso V., Levin D.C., Glode M., Come S., Steele G., Frei E. (1978). A clinical-pharmacological evaluation of hepatic arterial infusions of 5-fluoro-2’-deoxyuridine and 5-fluorouracil. Cancer Res. 38, 3784–3792.
  • 41. Fernandes D.J., Ramkumar S. (1999). Nebulization chemotherapy for lymphangitis carcinomatosa. Indian J. Radiol. Imaging. 9(2), 69–71.
  • 42. Finch R.E., Bending M.R., Lant A.F. (1979). Plasma levels of 5-fluorouracil after oral and intravenous administration in cancer patients. Br. J. Clin. Pharmacol. 7(6), 613–617.
  • 43. Focaccetti C., Bruno A., Magnani E., Bartolini D., Principi E., Dallaglio K. (2015). Effects of 5- Fluorouracil on Morphology, Cell Cycle, Proliferation, Apoptosis, Autophagy and ROS Production in Endothelial Cells and Cardiomyocytes. PLoS ONE 10(2), e0115686.
  • 44. Fransman W., Huizer D., Tuerk J., Kromhout H. (2007). Inhalation and dermal exposure to eight antineoplastic drugs in an industrial laundry facility. Int. Arch. Occup. Environ. Health 80, 396–403.
  • 45. Friedenberg S.G., Brooks A. C., Monnig A. A., Cooper E. S. (2013). Successful treatment of a dog with massive 5-fluorouracil toxicosis. Journal of Veterinary Emergency and Critical Care 23, 643–647.
  • 46. Gilman A.G., Rall T.W., Nies A.S., Taylor P. [eds.] (1990). Goodman and Gilman’s The Pharmacological Basis of Therapeutics. 8th ed, New York, Pergamon Press, 1229.
  • 47. Graeve C., McGovern P.M., Arnold S., Polovich M. (2017). Testing an intervention to decrease healthcare workers’ exposure to antineoplastic agents Oncology Nursing Forum. 44(1), E10–E19.
  • 48. Graeve C.U., McGovern P.M., Alexander B., Church T., Ryan A., Polovich M. (2016). Occupational Exposure to Antineoplastic Agents. An Analysis of Health Care Workers and Their Environments. Workplace Health & Safety 20(10), 1–12.
  • 49. Graf U., Frei H., Kagi A.J., Wurgler F.E. (1989). Thirty compounds tested in Drosophila wing spot test. Mutat. Res. 222(4), 35–573.
  • 50. Hadidian Z., Fredrickson T.N., Weisburger E.K., Weisburger J.H., Glass R.M., Mantel N. (1968). Tests for chemical carcinogens. Report on the activity of derivatives of ammatic amines, nitrosamines, quinolines, nitroalkanes, amides, epoxides, aziridines, and purine antimetabolites. J. Natl. Cancer. Inst. 41, 985–1036 [cyt. za: IARC 1981].
  • 51. Hammer A.S., Carothers M.A., Harris C.L. (1994). Unexpected neurotoxicity in dogs receiving a Cyclophosphamide, Dactinomycin, and 5-Fluorouracil chemotherapy protocol. J. Vet. Intern. Med. 8(3), 240–243.
  • 52. Harrison B.R., Peters B.G., Bing M.R. (2006). Comparison of surface contamination with cyclophosphamide and fluorouracil using a closed-system drug transfer device versus standard preparation techniques. Am. J. Health Syst. Pharm. 15, 63(18), 1736–1744.
  • 53. Harrison S.D. Jr., Denine E.P., Peckham J.C. (1978). Qualitative and quantitative toxicity of single and sequential sublethal doses of 5-fluorouracil in BOF 1 mice. Cancer Treat. Rep. 62, 533–545.
  • 54. Harvey H.J., MacEwen E.G., Hayes A.A. (1977). Neurotoxicosis associated with use of 5-fluorouracil in five dogs and one cat. J. Am. Vet. Med. Assac. 171, 277–278.
  • 55. Hasinoff B.B. (2010). The cardiotoxicity andmyocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicol. Appl. Pharmacol. 244(2), 190–195.
  • 56. Hazardous Substances Fact Sheet (1999). New Jersey Depatment of Health and Senior Services, Trenton.
  • 57. Heidelberger C., Griesbach L., Montag B.J., Mooren D., Cruz O. Schnitzer R., Grunberg E. (1958). Studies on Fluorinated Pyrimidines II. Effects on Transplated Tumors. Canc. Res. 18, 305–317.
  • 58. Henness A.M., Theilen G.H., Madewell B.R., Crow S.E. (1977). Neurotoxicosis associated with use of 5-fluorouracil. J. Am. Vet. Med. Assoc. 171, 692.
  • 59. Hill B.H.A. (1970). Occurrence of squamous carcinoma in hyperkeratosis and Bowenoid lesions treated with 5-fluorouracil. Aust. J. Dermatol. 11, 107.
  • 60. Hitzman C.J., Wattenberg L.W., Wiedmann T.S. (2006). Pharmacokinetics of 5-Fluorouracil in the Hamster Folowing Inhalation Delivery of Lipid-Coated Nanoparticles J. Pharm. Sci. 95(6), 1196–1210.
  • 61. Hon C.Y., Barzan C., Astrakianakis G. (2014). Identification of knowledge gaps regarding healthcare workers’ exposure to antineoplastic drugs: Review of literature. North America versus Europe. Safety and Health at Work 5(4), 169–174.
  • 62. Hospira Inc. SDS (2009). 5-Fluorouracil. Safety Data Sheet. USA (Karta charakterystyki).
  • 63. Houghton J.A., Houghton P.J., Wooten R.S. (1979). Mechanism of induction of gastrointestinal toxicity in the mouse by 5-fluorouracil, 5-fluorouridine, and 5-f1uoro-2’-deoxyuridine. Cancer Res. 39, 2406–2413.
  • 64. Hršak L., Pavicic S. (1974). Comparison of the effects of 5-fluorouracil and ftorafur on the haematopoiesis in mice. Biomedicine 21, 164–167.
  • 65. HSDB (2017). Hazardous Substances Data Base. Fluorouracil.
  • 66. Huang Y.W., Zhang N.H., Tong D.M., Feng X., Zhang M.B., He J.L. (2010). Investigation on occupational exposure to 5-fluorouracil in pharmacy intravenous admixture service of a hospital. Abstract. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 28(6), 414–417 [publication in Chinese].
  • 67. IARC (1981). Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Geneva World Health Organization, International Agency for Research on Cancer, Some Antineoplastic and Immunosuppressive Agents. Vol. 26. France, Lyon, 217–235.
  • 68. IARC (1987). Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Geneva World Health Organization, International Agency for Research on Cancer, 1972-PRESENT (Multivolume work). Suplement 7, 63 [dostęp: 7.08.2017; http://monographs.iarc.fr/ENG/Classification/index.php].
  • 69. Imagawa S., Tsuge K., Watari S. (1979). Morphogenesis of 5-fluorouracil induced symbrachydactyly in mice (Abstract). Teratology 20, 155.
  • 70. Jacobs E.M., Reeves W.J. Jr, Wood D.A., Pugh R., Braunwald J., Bateman J.R. (1971). Treatment of cancer with weekly intravenous 5-fluorouracil. Study by the Western Cooperative Cancer Chemotherapy Group (WCCCG). Cancer 27, 1302–1305.
  • 71. Jarugula V.R., Lam S.S., Boudinot F.D. (1997). Nonlinear pharmacokinetics of 5-fluorouracil in rats. Journal of Pharmaceutical Sciences 86(6), 756–758.
  • 72. Johnson R.K., Garibjanian B.T., Houchens D.P., Kline L., Gaston M.R., Syrkin A.B., Goldin A. (1976). Comparison of 5-fluorouracil and ftorafur. 1. Quantitative and qualitative differences in toxicity to mice. Cancer Treat. Rep. 60, 1335–1345.
  • 73. Jones P.A., Benedict W.F., Baker M.S., Mondai S., Rapp U., Heidelberger C. (1976). Oncogenic transformation of C3H/ l0TY: clone 8 mouse embryo cells by halogenated pyrimidine nucleosides. Cancer Res. 36, 101–107.
  • 74. Josting A., Wiedenmann S., Franklin J., May M., Sieber M., Wolf J. (2003). Secondary Myeloid Leukemia and Myelodysplastic Syndromes in Patients treated for Hodgkin’s disease: A report from the German Hodgkin’s Lymphoma Study Group. J. Clin. Oncol. 21, 3440–3446.
  • 75. Kaslow R.A., Wisch N., Glass J.L. (1972). Acute leukemia following cytotoxic therapy. J. Am. Med. Assoc. 219, 75–76.
  • 76. Kerr I.G., Zimm S., Collins J.M., O’Neill D., Poplack D.G. (1984). Effect of intravenous dose and schedule on cerebrospinal fluid pharmacokinetics of 5-fluorouracil in the monkey. Cancer Res. 44, 4929–4932.
  • 77. Kirk-Othmer Encyclopedia of Chemical Technology (1994). 4th ed. Vol. 1. New York, John Wiley and Sons, 1991-Present, V11, 475.
  • 78. Klaassen C.D. [ed.] (2001). Casarett and Doull’s Toxicology: The Basic Science of Poisons. 6th ed., New York, McGraw- -Hill, 359.
  • 79. Kojima E., Tsuboi A. (1992). Effects of 5-fluorouracil on hematopoietic stem cells in normal and irradiated mice. J. Radiat. Res. 33(3), 218–226.
  • 80. Konieczko K. (2016). Centralny Rejestr Danych o Narażeniu na Substancje Chemiczne, ich Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym w Łodzi. Łódź, IMP, 2018 [dane niepublikowane].
  • 81. Kumar S., Lobo S.W., Dubey A.K., Pandey S.K. (2006). Teratogenic effects of 5-fluorouracil on rat brain. Nepal Med. Coll. J. 8(1), 7–8.
  • 82. Kupczewska-Dobecka M. (2015). Metotreksat – frakcja wdychalna. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego [Methotrexate – inhalable fraction. Documentation of proposed values of occupational exposure limits (OELs)]. Podstawy i Metody Oceny Środowiska Pracy [Principles and Methods of Assessing the Working Environment] 1(83), 73–118.
  • 83. Kurtis B., Rosen. T. (1979). Squamous-cell carcinoma arising in a basal-cell epithelioma treated with 5-fluorouracil. J. Dermatol. Surg. Oncol. 5, 394–396.
  • 84. Ladeira C., Viegas S., Pádua. M., Gomes M., Carolino. E., Gomes M.C., Brito M. (2014). Assessment of genotoxic effects in nurses handling cytostatic drugs . Journal of Toxicology and Environmental Health – Part A 77(14-16), 879–887.
  • 85. Laffon B., Teixeira J.P., Silva S. (2005). Genotoxic effects in a population of nurses handling antineoplastic drugs. and relationship with genetic polymorphisms in DNA repair enzymes. Am. J. Ind. Med. 48, 128–136.
  • 86. Lamberti M., Giovane G., Garzillo E.M., Avino F., Feola A., Porto S., Tombolini V., Di Domenico M. (2014b). Animal Models in Studies of Cardiotoxicity Side. Effects from Antiblastic Drugs in Patients and Occupational Exposed Workers. BioMed Research International Volume. Article ID 240642.
  • 87. Lamberti M., Porto S., Marra M., Zappavigna S., Grimaldi A. (2012). 5-Fluorouracil induces apoptosis in rat cardiocytes through intracellular oxidative stress. J. Exp. Clin. Cancer Research 31(60), 2–8.
  • 88. Lamberti M., Porto S., Zappavigna S., Addeo E., Marra M., Miraglia N., Sannolo N., Vanacore D., Stiuso P., Caraglia M. (2014a). A mechanistic study on the cardiotoxicity of 5-fluorouracil in vitro and clinical occupational perspectives. Toxicology Letters 227, 151–156.
  • 89. Lawson C.C., Rocheleau C.M., Whelan E.A., Lividoti Hibert E. (2012). Occupational exposures among nurses and risk of spontaneous abortion. Am. J. Obstet. Gynecol. 206(4), 327. e1–8.
  • 90. Lee W-H., Loo C-Y., Traini D., Young P.M. (2015). Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. Asian J. Pharm. Sci. 10, 481–489.
  • 91. Lewis R.J. [ed.] (2004). Sax’s Dangerous Properties of Industrial Materials. 11th Edition. Wiley-Interscience, Wiley & Sons, Inc. Hoboken NJ, 1807.
  • 92. Lindner A., Santilli D., Hodgett J., Nerlinger C. (1960). Effects of 5-Fluorouracil on the Hematopietic System of the Mouse. Cancer Research 20, 497–502.
  • 93. Liss R.H., Chadwick M. (1974). Correlation of 5-fluorouracil (NSC-19893) distribution in rodents with toxicity and chemotherapy in man. Cancer Chemother. Rep. 58, 777–786.
  • 94. MacMilan W.E., Wolberg W.H., Wellng P.G. (1978). Pharmacokinetics of fluorouracil in humans. Cancer Res. 38, 3479– 3482.
  • 95. Mahmoodi M., Soleyman-Jahi S., Zendehdel K., Mozdarani H., Azimi C., Farzanfar F., Safari Z., Mohagheghi M-A., Khaleghian M., Divsalar K., Asgari E., Rezaei N. (2017). Chromosomal aberrations, sister chromatid exchanges, and micronuclei in lymphocytes of oncology department personnel handling anti-neoplastic drugs. Drug Chem. Toxicol. 40(2), 235–240.
  • 96. Maluf S.W., Erdtmann B. (2000). Follow-up study of the genetic damage in lymphocytes of pharmacists and nurses handling antineoplastic drugs evaluated by cytokinesis-block micronuclei analysis and single cell gel electrophoresis assay. Mutat. Res. 471, 21–27.
  • 97. McDiarmid M.A., Oliver M.S., Roth T.S., Rogers B., Escalante. C. (2010). Chromosome 5 and 7 abnormalities in oncology personnel handling anticancer drugs. J. Occup. Environ. Med. 52, 1028–1034.
  • 98. McEvoy G.K. [ed.] (2007). American Hospital Formulary Service. AHFS Drug Information, American Society of HealthSystem Pharmacists, Bethesda, MD, 1048.
  • 99. Mikhaildis D.P., Gilett O.S., Lang-Stevenson D. (1978). Fluorouracil cardiotoxicity. Br. Med. J. II, 1138 [cyt. za: IARC 1981].
  • 100. Morrison W.B. (1998). Cancer in Dogs and Cats. Medical and Surgical Management. Baltimore, MD Williams & Wilkins, 370.
  • 101. Musilová J., Michalová K., Urban J. (1979). Sister-chromatid exchanges and chromosomal breakage in patients treated with cytostatics. Mutat. Res. 67, 289–294.
  • 102. Mylan (2018). Efudix, 50 mg/g, krem. Charakterystyka produktu leczniczego [http://www.mylan.com.pl/-/media/mylanpl/documents/chpl-2018/efudix_chpl_2016.09.07.pdf?la- =pl-pl].
  • 103. Nakamura M., Fort F.L., Kikuchi Y. (1993). Fetal liver micronucleus assay in mice of 5fluorouracil and related compounds. Mutat. Res. 291(1), 29–34.
  • 104. Ndaw S., Denis F., Marsan P., d’Almeida A., Robert A. (2010). Biological monitoring of occupational exposure to 5-fluorouracil: Urinary α-fluoro-β-alanine assay by high performance liquid chromatography tandem mass spectrometry in health care personnel. J. Chromatography B. 878, 2630–2634.
  • 105. NIOSH (2007). NOES. National Occupational Exposure Survey conducted from 1981-1983. Estimated numbers of employees potentially exposed to specific agents by 2-digit standard industrial classification (SIC) [cyt. za: HSDB], [dostęp:8.08. 2017; http://www.cdc.gov/noes/].
  • 106. NIOSH (2016). List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings. Departament of health and human services. Center for Disease Control and Prevention. National Institute for Occupational Safety and Health.
  • 107. O’Neil M.J. [ed.] (2006). The Merck index : an encyclopedia of chemicals. drugs. and biologicals. Chemistry’s constant companion. 14th ed. United States Whitehouse Station, NJ Merck, 715.
  • 108. Obwieszczenie Prezesa Urzędu Rejestracji Produktów Leczniczych. Wyrobów Medycznych i Produktów Biobójczych. DzU z dnia 6 kwietnia 2016 r., poz. 39 [Polish legal act].
  • 109. Oishi T., Shiraki H., Mineura K., Takahira H. (1973). The study on metabolic fate of 5-fluorouracil-6_14C after percutaneous administration. J. Pharm. Soc. Jpn. 93, 749–755 (abstract) [publication in Japanese].
  • 110. Perry M.J. (2008). The Chemotherapy source book. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. ISBN 978-1451101454.
  • 111. Pfizer Ltd SDS (2012). 5-Fluorouracil, Safety Data Sheet. UK (Karta charakterystyki).
  • 112. Polk A., Vaage-Nilson M., Vistisen K., Nielsen D.L. (2013). Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: A systematic review of incidence. manifestations and predisposing factors. Cancer Treatment Reviews 39(8), 974–984.
  • 113. Poplack D. (1984). Effect of intravenous dose and schedule on cerebrospinal fluid pharmacokinetics of 5-fluorouracil in the monkey. Cancer Res. 44, 4929–4932.
  • 114. Pottage A., Holt S., Ludgate S., Langlands A.O. (1978). Fluorouracil cardiotoxicity. Br. Med. J. 1, 547.
  • 115. Prod Info (2005). Fluorouracil IV injection, 2008. Prod Info EFUDEX(R) topical cream, topical solution [cyt. za: HSDB 2017].
  • 116. Radley J.M., Scurfield G. (1979). Effects of 5-fluorouracil on mouse bone marrow. Br. J. Haematol. 43(3), 341–351.
  • 117. Reimer R.R., Hoover R., Fraumeni J.F., Young R.C. (1977). Acute leukemia after alkylating-agent therapy of ovarian cancer. New Engl. J. Med. 297, 177–181.
  • 118. Rekhadevi P.V., Sailaja N., Chandrasekhar M., Mahboob M., Rahman.M. F., Grover. P. (2007). Genotoxicity assessment in oncology nurses handling anti-neoplastic drugs. Mutagenesis 22, 395–401.
  • 119. Roberts J., Powell L. (2001). Accidental 5-fluorouracil exposure in a dog. J. Vet. Emerg. Crit. Care 11(4), 281–286.
  • 120. Rombaldi F., Cassini C., Salvador M., Saffi J., Erdtmann B. (2009). Occupational risk assessment of genotoxicity and oxidative stress in workers handling anti-neoplastic drugs during a work week. Mutagenesis 24, 143–148.
  • 121. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1272/2008 z dnia 16.12.2008 r. w sprawie klasyfikacji, oznakowania i pakowania substancji i mieszanin, zmieniające i uchylające dyrektywy 67/648/EWG i 1999/45/WE oraz zmieniające rozporządzenie WE nr 1907/2006. Dz. Urz. UE L 353 z dnia 31.12.2008 r. ze zm. (tzw. rozporządzenie CLP).
  • 122. Rubino F.M., Verduci C., Buratti M., Fustinoni S., Campo L., Omodeo-Sale E., Giglio M., Iavicoli S., Brambilla G., Colombi A. (2006). Assay of urinary α-fluoro-β-alanine by gas chromatography-mass spectrometry for the biological monitoring of occupational exposure to 5-fluorouracil in oncology nurses and pharmacy technicians. Biomed, Chromatogr. 20, 257.
  • 123. Sagent Pharmaceuticals. Inc. SDS (2016). 5-Fluorouracil. Safety Data Sheet. USA (Karta charakterystyki).
  • 124. Sangster J. (1994). LOGKOW Databank. Sangster Res. Lab. Canada, Montreal Quebec.
  • 125. Sasaki M., Dakeishi M., Hoshi S,. Ishii N., Murata K. (2008). Assessment of DNA damage in Japanese nurses handling antineoplastic drugs by the comet assay. J. Occup. Health. 50, 7–12.
  • 126. Sayre R.S., Barr J.W., Bailey E.M. (2012). Accidental and experimentally induced 5fluorouracil toxicity in dogs. J. Vet. Emerg. Crit. Care 22(5), 545–549.
  • 127. Scherf H.R., Schmahl D. (1975). Experimental investigations on immunodepressive properties of carcinogenic substances in male Sprague-Dawley rats. Recent. Results Cancer Res. 52, 76–87.
  • 128. Schimmel K.J., Richel D.J., van den Brink R.B., Guchelaar H.J. (2004). Cardiotoxicity of cytotoxic drugs. Cancer Treatment Reviews. 30(2), 181–191.
  • 129. Schmahl D., Osswald H. (1970). Experimental studies on the carcinogenic effects of anticancer chemotherapeutics and immunosuppressives. Arzneimittel-Forsch./Drug Res. 20, 1461– 1467 [publication in German].
  • 130. Seino Y., Nagao M., Yahagi. T., Hoshi. A., Kawachi. T., Sugimura. T. (1978). Mutagenicity of several classes of antitumor agents to Salmonella typhimurium TA98, TA100 and TA92. Cancer Res. 38, 2148–2156.
  • 131. Sessink P., Anzion P., Van den Broek R., Bos P. (1992b). Detection of contamination with antineoplastic agents in a hospital pharmacy department. The Netherlands Pharmaceutisch Weekblad Scientific edition 14, 16–22.
  • 132. Sessink P., Connot T.H., Jorgenson JA., Tyler T.G. (2011). Reduction in surface contamination with antineoplastic drugs in 22 hospital pharmacies in the US following implementation of a closed-system drug transfer device. J. Oncol. Pharm. Pract. 17(1), 39–48.
  • 133. Sessink P., Timmermans J.L., Anzion R., Bos R. (1994). Assessment of occupational exposure of pharmaceutical plant workers to 5-fluorouracil. Determination of σ-fluoro-ß-alanine in urine. Journal of Occupational Medicine 36, 79–83.
  • 134. Sessink P.J.M., Boer K.A., Scheefhals A.P., Anzion R.B., Bos R.P. (1992a). Occupational exposure to antineoplastic agents at several departments in a hospital: environmental contamination and excretion of cyclophosphamide and ifosfamide in urine of exposed workers. Int. Arch. Occup. Environ. Health 64, 105–112.
  • 135. Shah R.M., MacKay R.A. (1978). Teratological evaluation of 5-fluorouracil and 5-bromo-2-deoxyuridine on hamster fetuses. J. Embryol. Exp. Morphol. 43, 47–54.
  • 136. Shani J., Berman J.A., Wolf W. (1978a). Autoradiographic distribution studies of 2_14C-fluorouracil following oral or intravenous administration in mice bearing solid sarcoma-180. J. Pharm. Sei. 67, 344–347.
  • 137. Shani J., Wolf. W., Schlesinger T., Atkins H.L., Bradley-Moore P.R., Casella V., Fowler J.S., Greenberg O., Ido T., Lambrecht R.M., MacGregor R., Mantescu C., Neirinckx R., Som P., Wolf. A.P. (1978b). Distribution of l9F-5-fluorouracil in tumor-bearing mice and rats. Int. J. Nucl. Med. Biol. 5, 19–28.
  • 138. Sherins R.J., DeVita. V.T. Jr. (1973). Effect of drug treatment for lymphoma on male reproductive capacity: Studies of men in remission after therapy. Annals of Internal Medicine 79, 216–220.
  • 139. Sigma-Aldrich SDS (2014). 5-Fluorouracil. Safety Data Sheet. USA (Karta charakterystyki).
  • 140. Sitar O.S., Shaw D.H., Thirlwell M.P., Ruedy J.R. (1977). Disposition of 5-fluorouracil after intravenous bolus doses of a commercial formulation to cancer patients. Cancer Res. 37, 3981–3984.
  • 141. Skov T., Maarup B., Olsen J., Rorth M., Winthereik. H., Lynge. E. (1992). Leukaemia and reproductive outcome among nurses handling antineoplastic drugs. Brit. J. Ind. Med. 49, 855–861. Snavely N.R.,
  • 142. Snavely D.A., Wilson B.B. (2010). Toxic Effects of Fluorouracil Cream Ingestion on Dogs and Cats. Arch. Dermatol. 146(10), 1195–1196.
  • 143. Soukop M., McVie J.G., Calman K.C. (1978). Fluorouracil cardiotoxicity. Br. Med. J. 1, 1422.
  • 144. Stadler H.E., Knowles J. (1971). Fluorouracil in pregnancy: effect on the neonate. J. Am. Med. Assac. 217, 214–215.
  • 145. Stephens J.D., Golbus M.S., Miller T.R. (1980). Multiple congenital anomalies in a fetus exposed to S-fluorouracil during the first trimester. Am. J. Obstet. Gynecol. 37, 747–749.
  • 146. Stevenson D.L., Mikhailidis D.P., Gillett O.S. (1977). Cardiotoxicity of 5-fluorouracil. Lancet 2, 406–407.
  • 147. Suzuki H., Takasawa H., Kobayashi K., Terashima Y., Shimada Y., Ogawa I., Tanaka J., Imamura T., Miyazaki A., Hayashi M. (2009). Evaluation of a liver micronucleus assay with 12 chemicals using young rats (II): a study by the Collaborative Study Group for the Micronucleus Test/Japanese Environmental Mutagen Society-Mammalian Mutagenicity Study Group. Mutagenesis 24(1), 9–16.
  • 148. Tatsumura T., Koyama S., Tsujimoto M., Kitagawa M., Kagamimori S. (1993). Further study of nebulisation chemotherapy, a new chemotherapeutic method in the treatment of lung carcinomas: fundamental and clinical. Br. J. Cancer 68, 1146–1149.
  • 149. Tatsumura T., Yamamoto K., Murakami A., Tsuda M., Sugiyama S. (1983). New chemotherapeutic method for the treatment of tracheal and bronchial cancers – nebulisation chemotherapy. Gan no Rinsho. Jap. J. Cancer Clinics 29(7), 765–770.
  • 150. Theilen G.H. (1987). Adverse effect from use of 5% Fluorouracil. J. Am. Vet. Med. Assoc. 191(3), 276.
  • 151. Thomson/Micromedex (2007). Drug Information for the Health Care Professional. Volume 1. Greenwood Village, CO, 1430.
  • 152. Tsibirisi P., Bui-Xuan C., Bui-Xuan B., Lombard-Bohas C., Duperret S., Belkhiria M., Tabib A., Maujean G., Descotes J., Timour Q. (2006). Cardiac lesions induced by 5-fluorouracil in the rabbit. Hum. Exp. Toxicol. 25(6), 305–309.
  • 153. Undeger U., Basaran N., Kars A., Guc D. (1999). Assessment of DNA damage in nurses handling antineoplastic drugs by the alkaline COMET assay. Mutat. Res. 439, 277–285.
  • 154. Ursini C.L., Cavallo D., Colombi A., Giglio M., Marinaccio A., Iavicoli S. (2006). Evaluation of early DNA damage in healthcare workers handling antineoplastic drugs. Int. Arch. Occup. Environ. Health 80, 134–140.
  • 155. US EPA (2004). Estimation Program Interface (EPI) Suite. Ver.3.12. Nov 30. 2004. [dostęp: 8.08.2017; http://www.epa gov/oppt/exposure/pubs/episuitedl.htm].
  • 156. USP (U. S. Pharmacopeia) SDS (2013). 5-Fluorouracil. Safety Data Sheet. Canada (Karta charakterystyki).
  • 157. Valanis B. G., Vollmer W. M., Labuhn K. T., Glass A. G. (1993). Acute symptoms associated with antineoplastic drug handling among nurses. Cancer Nursing 16, 288–295.
  • 158. Vatanara A., Kalantarian P., Najafabadi A.R., Haririan I., Darabi M., Yamini Y. (2009). Nanoparticles of fluorouracyl for Inhalation Precipitated by Supercritical Carbon Dioxide. RDD Europe 2, 373–376.
  • 159. Vilani F., Guindani A., Pagnoni A. (1979). 5-Fluorouracil cardiotoxicity. Tumori 65, 487–495.
  • 160. Villarini M., Dominici L., Piccinini R., Fatigoni C., Ambrogi M., Curti G., Morucci P., Muzi G., Monarca S., Moretti M. (2011). Assessment of primary, oxidative and excision repaired DNA damage in hospital personnel handling antineoplastic drugs. Mutagenesis 26(3), 359–369.
  • 161. Villarini M., Gianfredi V., Levorato S., Vannini S., Salvatori T., Moretti M. (2016). Occupational exposure to cytostatic/ antineoplastic drugs and cytogenetic damage measured using the lymphocyte cytokinesis-block micronucleus assay: A systematic review of the literature and meta-analysis (Review). Mutation Research – Reviews in Mutation Research 770 (1), 35–45.
  • 162. Wattenberg L.W., Wiedmann T.S., Estensen R.D. (2004). Chemoprevention of Cancer of the Upper Respiratory Tract of the Syrian Golden Hamster by Aerosol Administration of Difluoromethylornithine and 5-Fluorouracil. Canc. Res. 64, 2347–2349.
  • 163. Wawrocka-Pawlak M. (2005). Jak działa 5-fluorouracyl. Współczesna Onkologia 9, 10, 414–423.
  • 164. Weathers D.R., Halstead C.L. (1969). Histologic study of the effect of 5-fluorouracil on chemically induced early dysplasia of the hamster cheek pouch. J. Dent. Res. 48, 157.
  • 165. Weiss H.D., Walker M.D., Wiernik P.H. (1974). Neurotoxicity of commonly used antineoplastic agents (first of two parts). New Engl. J. Med. 291, 75–81.
  • 166. Wilson J.G. (1971). Use of Rhesus monkeys in teratological studies. Fed. Proc. 30, 104–108.
  • 167. Withrow S.J., McEwen E.G. (1996). Small Animal Clinical Oncology. 2nd Ed. Philadelphia, W.B., Saunders Co., 80.
  • 168. Wong T., Benson W.M. (1957). Toxicity of 5-Fluorouracil. Fed. Proc. 16, 348 [cyt. za: Lindner 1960].
  • 169. Yoshida J., Koda S., Nishida S. (2011). Association between occupational exposure levels of antineoplastic drugs and work environment in five hospitals in Japan. J. Oncol. Pharm. Pract. 17, 29–38.
  • 170. Yoshida J., Kosaka H., Tomioka K., Kumagai S. (2006). Genotoxic risks to nurses from contamination of the work environment with antineoplastic drugs in Japan. J. Occup. Health. 48, 517–522.
  • 171. Załęska-Radziwiłł M., Łebkowska M., Affek K., Chrzanowska N. (2011). Ocena ryzyka wywołanego obecnością wybranych farmaceutyków w wodach powierzchniowych w stosunku do sinic i roślin [Environmental risk assessment of selected pharmaceuticals present in surface waters in relation to cyanobacteria and plants]. Ochrona Środowiska i Zasobów Naturalnych [Environmental Protection and Natural Resources] 48, 372–382.
  • 172. Zarogoulidis P., Chatzaki E., Porpodis K.; Domvri K., Schmidt W.H., Goldberg E.P., Karamanos N., Zarogoulidis K. (2012). Inhaled chemotherapy in lung cancer: future concept of nanomedicine. International Journal of Nanomedicine 7, 1551–1572.
  • 173. Zeiger E., Anderson B., Haworth S., Lawlor T., Mortelmans K., Speck W. (1987). Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals. Environ. Mutagen. 9, 1–110.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec79bc8d-7884-444f-8c48-99758dd0e1b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.