Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
CFD models and methods in diagnosis and treatment of circulatory system diseases
Konferencja
XVI Międzynarodowa Szkoła Komputerowego Wspomagania Projektowania, Wytwarzania i Eksploatacji, Jurata, 14-18 maja 2012
Języki publikacji
Abstrakty
Choroby układu krążenia (CVD) stanowią główną przyczynę zgonów – są odpowiedzialne za niespełna co drugą śmierć w skali światowej. Zasadniczym celem tej pracy jest prezentacja krótkiego przeglądu potencjalnych zastosowań metod CFD w diagnostyce, leczeniu jak i zrozumieniu natury CVD.
Cardiovascular disease (CVD) is the leading cause of deaths – it is responsible for nearly one in two deaths worldwide. The main purpose of this paper is to provide short review of potential application of CFD methods in diagnosis, treatment, and understanding nature of CVD.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
545--560
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
- Katedra Podstaw Budowy Maszyn Akademia Techniczno-Humanistyczna w Bielsku-Białej
Bibliografia
- [1] Acton S., Ray N.: Biomedical Image Analysis: Segmentation, Morgan & Claypool Publishers, 2009.
- [2] Aird W.C.: Endothelial Biomedicine, Cambridge University Press, Cambridge 2007.
- [3] Balligand J.L., Feron O., Dessy C.: eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues, Physiological Reviews, Vol. 89, No. 2, 2009, pp. 481-534.
- [4] Barakat A., Lieu D.: Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress, Cell Biochemistry and Biophysics, Vol. 38, No. 3, 2003, pp. 323-343.
- [5] Berk B.C.: Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells, Circulation, Vol. 117, No. 8, 2008, pp. 1082-1089.
- [6] Caro C.G.: Discovery of the role of wall shear in atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 29, No. 2, 2009, pp. 158-161.
- [7] Chandran K.B., Udaykumar H.S., Reinhardt J.M.: Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems, Springer Science+Business Media, New York 2011.
- [8] Chaniotis A.K., Kaiktsis L., Katritsis D., Efstathopoulos E., Pantos I., Marmarellis V.: Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments, Physica Medica, Vol. 26, No. 3, 2010, pp. 140-156.
- [9] Chatzizisis Y.S., Coskun A.U., Jonas M., Edelman E.R., Feldman C.L., Stone P.H.: Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior, Journal of the American College of Cardiology, Vol. 49, No. 25, 2007, pp. 2379-2393.
- [10] Chatzizisis Y.S., Jonas M., Coskun A.U., Beigel R., Stone B.V., Maynard C., Gerrity R.G., Daley W., Rogers C., Edelman E.R., Feldman C.L., Stone P.H.: Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study, Circulation, Vol. 117, No. 8, 2008, pp. 993-1002.
- [11] Cheng C., Tempel D., van Haperen R., de Boer H.C., Segers D., Huisman M., van Zonneveld A.J., Leenen P.J., van der Steen A., Serruys P.W., de Crom R., Krams R.: Shear stress-induced changes in atherosclerotic plaque composition are modulated by chemokines, The Journal of Clinical Investigation, Vol. 117, No. 3, 2007, pp. 616-626.
- [12] Chien S., Usami S., Taylor H.M., Lundberg J.L., Gregersen M.I.: Effects of hematocrit and plasma proteins on human blood rheology at low shear rates, Journal of Applied Physiology, Vol. 21, No. 1, 1966, pp. 81-87.
- [13] De Santis G., De Beule M., Segers P., Verdonck P., Verhegghe B.: Patient-specific computational haemodynamics: generation of structured and conformal hexahedral meshes from triangulated surfaces of vascular bifurcations, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 14, Issue 9, 2011, pp. 797-802.
- [14] Enderle J.D.: Landmarking and Segmentationof 3D CT Images, Morgan & Claypool Publishers, 2009
- [15] Félétou M., Vanhoutte P.M.: EDHF: an update, Clinical Science, Vol. 117, No. 4, 2009, pp. 139-155.
- [16] Fung Y.C.: On the foundations of biomechanics, Journal of Applied Mechanics, Vol. 50, No. 4b, 1983, pp. 1003-1009.
- [17] Haga J.H., Li Y.S., Chien S.: Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells, Journal of Biomechanics, Vol. 40, No. 5, 2007, pp. 947-960.
- [18] Johnston B.M., Johnston P.R., Corney S., Kilpatrick D.: Non-Newtonian blood flow in human right coronary arteries: steady state simulations, Journal of Biomechanics, Vol. 37, No. 5, 2004, pp. 709-720.
- [19] Kampoli A.M., Tousoulis D., Antoniades C., Siasos G., Stefanadis C.: Biomarkers of premature atherosclerosis, Trends in Molecular Medicine, Vol. 15, No. 7, 2009, pp. 323-332.
- [20] Knight J., Olgac U., Saur S.C., Poulikakos D., Marshall W. Jr., Cattin P.C., Alkadhi H., Kurtcuoglu V.: Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human right coronary arteries, Atherosclerosis, Vol. 211, No. 2, 2010, pp. 445-450.
- [21] Lamon B.D., Hajjar D.P.: Inflammation at the molecular interface of atherogenesis: an anthropological journey, The American Journal of Pathology, Vol. 173, No. 5, 2008, pp. 1253-1264.
- [22] Li Y.S., Haga J.H., Chien S.: Molecular basis of the effects of shear stress on vascular endothelial cells, Journal of Biomechanics, Vol. 38, No. 10, 2005, pp. 1949-1971.
- [23] Quemada D.: Biofluids as structured media: Rheology and flow properties of blood, In: Casas-Vasquez J. and Jou D. (Eds.): Rheological Modelling: Thermodynamical and Statistical Approaches Rheological Modelling: Thermodynamical and Statistical Approaches, Springer, Berlin 1991, pp. 58-193.
- [24] Rikhtegar F., Knight J.A., Olgac U., Saur S.C., Poulikakos D., Marshall W. Jr., Cattin P.C., Alkadhi H., Kurtcuoglu V.: Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human left coronary arteries, Atherosclerosis, Vol. 221, No. 2, 2012, pp. 432-437.
- [25] Silbernagl S., Despopoulos A.: Color atlas of physiology. Georg Thieme Verlag, Stuttgart, 2009.
- [26] Soulis J.V, Fytanidis D.K., Papaioannou V.C., Giannoglou G.D.: Wall shear stress on LDL accumulation in human RCAs, Medical Engineering&Physics, Vol. 32, No., 2010, pp. 867–877.
- [27] Takizawa K., Moorman C., Wright S., Christopher J., Tezduyar T.E.: Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions, Computational Mechanics, Vol. 46, No. 1, 2010, pp. 31-41.
- [28] Tang E.H., Vanhoutte P.M.: Endothelial dysfunction: a strategic target in the treatment of hypertension?, Pflügers Archiv: European Journal of Physiology, Vol. 459, No. 6, 2010, pp. 995-1004.
- [29] Taylor C.A., Humphrey J.D.: Open problems in computational vascular biomechanics: Hemodynamics and arterial wall mechanics, Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 45-46, 2009, pp. 3514-3523.
- [30] Voelkel N.F. and Rounds S.: The pulmonary endothelium. Function in health and disease, Wiley-Blackwell, A John Wiley&Sons, New York 2009.
- [31] Wasilewski J., Kiljański T., Głowacki J.: Badania kliniczne i doświadczalne w chorobach serca, płuc i naczyń. Geometryczny czynnik ryzyka i zaburzenia przepływu w procesie miażdżycowym, Kardiochirurgia i Torakochirurgia Polska, Vol. 3, 2010, s. 325-330
- [32] Wasilewski J., Kiljański T.: Biomechaniczna przyczyna miażdżycy, Wydawnictwo Politechniki Łódzkiej, Łódź 2011
- [33] Zhang Y., Bazilevs Y., Goswami S., Bajaj C.L., Hughes T.J.: Patient-specific vascular nurbs modeling for isogeometric analysis of blood flow, Computer Methods In Applied Mechanics And Engineering, Vol. 96, No. 29-30, 2007, pp. 2943-2959.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec799362-1357-41df-9400-ab86c7cd1e14