PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimized co-solvent methanolysis of mixed non-edible oils over nano solid base catalyst derived from egg shells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A nano solid base catalyst (NSBC) was developed from chicken egg shells (CES) and utilized in the cosolvent methanolysis (CSM) and non-solvent methanolysis (NSM) of an equal mix of non-edible oils (waste cooking oil and wild mustard oil) into biodiesel (BD) via the optimized methodology. The NSBC was synthesized by calcinating the raw CES at 850 °C for 2 h and a heating rate of 10 °C/min. The NSBC was identified using FESEM, EDX, BET surface area and pore volume, and XRD. The XRD measurement confirmed the transformation of the pristine CES into nano CaO. Also, the NSBC had a BET surface area of 11.47 m2/g, while its average pore diameter was 8.12 nm, demonstrating its mesoporous structure, which is helpful for the methanolysis of lipids into BD. The CSM of mixed oils produced the highest output of BD (91.12%) using 5.0 wt.% of NSBC, 9:1 methanol: oil molar ratio, 40 wt.% of co-solvent at 60 °C for 1.5 h, while the NSM of the mixed oil produced the highest yield of BD (84.55%) at 65 °C for 2h using 5.0 wt.% of the NSBC and 12:1 methanol: oil molar ratio. Analysis of the resulting BD employing FTIR spectroscopy and TLC technique confirmed the transformation of the oils mix into BD. Moreover, 1H NMR spectroscopy measurements exhibited that the conversion of mixed oils into BD amounted to 96.96%. Additionally, the fuel properties of the resulting BD samples conformed to those established for ASTM D6751 standards. In conclusion, the NSBC catalyst derived from the CES could be utilized as an effective catalyst for the methanolysis reaction of lipids. Also, incorporating the co-solvent within the reaction medium effectively reduced the experimental conditions required to achieve the highest transformation of the oils blend into BD compared to the NSM process.
Rocznik
Strony
48--62
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Department of Chemistry, College of Science, Mosul University, Majmoaa Street, 41002, Mosul, Iraq
  • Department of Chemistry, College of Science, Mosul University, Majmoaa Street, 41002, Mosul, Iraq
Bibliografia
  • 1. Ahmad, S., Chaudhary, S., Pathak, V. V., Kothari, R., & Tyagi, V. V. (2020). Optimization of direct transesterification of Chlorella pyrenoidosa catalyzed by waste egg shell based heterogenous nano CaO catalyst. Renewable Energy, 160, 86–97.
  • 2. Al-Tikrity, E. T, Fadhil, A. B., Dheyab M. M. (2015). Two-step Base Catalyzed Transesterification of Chicken Fat: Optimization of Parameters. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(17), 1861–1866.
  • 3. Ambat, I., Srivastava, V., Iftekhar, S., Haapaniemi, E., & Sillanpää, M. (2020). Effect of different cosolvents on biodiesel production from various low cost feedstocks using Sr–Al double oxides. Renewable Energy, 146, 2158–2169.
  • 4. Annane, K., Lemlikchi, W., & Tingry, S. (2023). Efficiency of eggshell as a low-cost adsorbent for removal of cadmium: Kinetic and isotherm studies. Biomass Conversion and Biorefinery, 13(7),6163–6174.
  • 5. Ashine, F., Kiflie, Z., Prabhu, S. V., Tizazu, B. Z., Varadharajan, V., Rajasimman, M.,... & Jayakumar, M. (2023). Biodiesel production from Argemone mexicana oil using chicken eggshell derived CaO catalyst. Fuel, 332, 126166.
  • 6. Bai, H., Tian, J., Talifu, D., Okitsu, K., & Abulizi, A. (2022). Process optimization of esterification for deacidification in waste cooking oil: RSM approach and for biodiesel production assisted with ultrasonic and solvent. Fuel, 318, 123697.
  • 7. Banerjee, S., Sahani, S., & Sharma, Y. C. (2019). Process dynamic investigations and emission analyses of biodiesel produced using Sr–Ce mixed metal oxide heterogeneous catalyst. Journal of environmental management, 248, 109218.
  • 8. Buasri, A., Rattanapan, T., Boonrin, C., Wechayan, C., & Loryuenyong, V. (2015). Oyster and Pyramidella Shells as Heterogeneous Catalysts for the Microwave Assisted Biodiesel Production from Jatropha curcas Oil. Journal of Chemistry, 2015(1), 578625.
  • 9. Chanakaewsomboon, I., Tongurai, C., Photaworn, S., Kungsanant, S., & Nikhom, R. (2020). Investigation of saponification mechanisms in biodiesel production: Microscopic visualization of the effects of FFA, water and the amount of alkaline catalyst. Journal of Environmental Chemical Engineering, 8(2), 103538.
  • 10. Chumuang, N., & Punsuvon, V. (2017). Response surface methodology for biodiesel production using calcium methoxide catalyst assisted with tetrahydrofuran as cosolvent. Journal of Chemistry, 2017(1), 4190818.
  • 11. da Conceição, L. R. V., da Costa, C. E. F., Filho, G. N. D. & Filho, E. R. P. J. R. (2015). Ethanolysis optimisation of jupati (Raphia taedigera Mart.) oil to biodiesel using response surface methodology. Journal of the Brazilian Chemical Society, 26, 1321–1330.
  • 12. Danane, F., Bessah, R., Alloune, R., Tebouche, L., Madjene, F., Kheirani, A. Y., & Bouabibsa, R. (2022). Experimental optimization of Waste Cooking Oil ethanolysis for biodiesel production using Response Surface Methodology (RSM). Science and Technology for Energy Transition, 77, 14.
  • 13. Deharbe M. Milagros, M., Gómez, L. E., Boix, A. V., & Serra, R. M. (2023). Synthesis and characterization of eggshell-based catalysts for the treatment of gaseous pollutants. Applied Catalysis A: General, 668, 119471.
  • 14. Elgharbawy, A. S., Sadik, W. A., Sadek, O. M., & Kasaby, M. A. (2021). Glycerolysis treatment to enhance biodiesel production from low-quality feedstocks. Fuel, 284, 118970.
  • 15. Fadhil, A.B., Al-Tikrity, E.T.B., Ibraheem, K.K. (2019). Transesterification of bitter almond oil as a new non-edible feedstock with mixed alcohols system: Parameter optimization and analysis of biodiesel. Waste and Biomass Valorization, 10, 1597–1608.
  • 16. Fadhil, A. B., Nayyef, A. W., & Al-Layla, N. M. (2020). Biodiesel production from nonedible feedstock, radish seed oil by cosolvent method at room temperature: evaluation and analysis of biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(15),1891–1901.
  • 17. Gupta A. R., Rathod V. K. (2018). Waste cooking oil and waste chicken eggshells derived solid base catalyst for the biodiesel production: optimization and kinetics. Waste Manage 79, 169–78.
  • 18. Huang, J., Zou, Y., Yaseen, M., Qu, H., He, R., & Tong, Z. (2021). Fabrication of hollow cage-like CaO catalyst for the enhanced biodiesel production via transesterification of soybean oil and methanol. Fuel, 290, 119799.
  • 19. Jamil, F., Al‐Riyami, M., Al‐Haj, L., Al‐Muhtaseb, A. A. H., Myint, M. T., Baawain, M., & Al‐Abri, M. (2021). Waste Balanites aegyptiaca seed oil as a potential source for biodiesel production in the presence of a novel mixed metallic oxide catalyst. International Journal of Energy Research, 45(12), 17189–17202.
  • 20. Kedir, W. M., Wondimu, K. T., & Weldegrum, G. S. (2023). Optimization and characterization of biodiesel from waste cooking oil using modified CaO catalyst derived from snail shell. Heliyon, 9(5).
  • 21. Khan, S. G., Hassan, M., Anwar, M., Khan, U. M., & Zhao, C. (2022). Mussel shell based CaO nano-catalyst doped with praseodymium to enhance biodiesel production from castor oil. Fuel, 330, 125480.
  • 22. Laskar, I. B., Deshmukhya, T., Bhanja, P., Paul, B., Gupta, R., & Chatterjee, S. (2020). Transesterification of soybean oil at room temperature using biowaste as catalyst; an experimental investigation on the effect of co-solvent on biodiesel yield. Renewable Energy, 162, 98–111.
  • 23. Lau, P. C., Kwong, T. L., & Yung, K. F. (2016). Effective heterogeneous transition metal glycerolates catalysts for one-step biodiesel production from low grade non-refined Jatropha oil and crude aqueous bioethanol. Scientific reports, 6(1), 23822.
  • 24. Madhuvilakku, R., Mariappan, R., Jeyapal, S., Sundar, S., & Piraman, S. (2013). Transesterification of palm oil catalyzed by fresh water bivalve mollusk (Margaritifera falcata) shell as heterogeneous catalyst. Industrial & Engineering Chemistry Research, 52(49), 17407–17413.
  • 25. Maneechakr, P., & Karnjanakom, S. (2021). Systematic production of biodiesel fuel from palm oil over porous K2O@ CaO catalyst derived from waste chicken eggshell via RSM/kinetic/thermodynamic studies. Journal of Environmental Chemical Engineering, 9(6), 106542.
  • 26. Mannu, A., Ferro, M., Pietro, M. E. D., & Mele, A. (2019). Innovative applications of waste cooking oil as raw material. Science progress, 102(2), 153–160.
  • 27. Mares, E. K. L., Gonçalves, M. A., da Luz, P. T. S., da Rocha Filho, G. N., Zamian, J. R., & da Conceição, L. R. V. (2021). Acai seed ash as a novel basic heterogeneous catalyst for biodiesel synthesis: Optimization of the biodiesel production process. Fuel, 299, 120887.
  • 28. Mohadesi, M., Aghel, B., Maleki, M., & Ansari, A. (2020). Study of the transesterification of waste cooking oil for the production of biodiesel in a microreactor pilot: The effect of acetone as the cosolvent. Fuel, 273, 117736.
  • 29. Navas, M. B., Ruggera, J. F., Lick, I. D., & Casella, M. L. (2020). A sustainable process for biodiesel production using Zn/Mg oxidic species as active, selective and reusable heterogeneous catalysts. Bioresources and Bioprocessing, 7, 1–13.
  • 30. Nguyen, H. C., Liang, S. H., Li, S. Y., Su, C. H., Chien, C. C., Chen, Y. J., & Huong, D. T. M. (2018). Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 85, 165–169.
  • 31. Pandit, P. R., & Fulekar, M. H. (2017). Egg shell waste as heterogeneous nanocatalyst for biodiesel production: optimized by response surface methodology. Journal of environmental management, 198, 319–329.
  • 32. Pandit, P. R., & Fulekar, M. H. (2019). Biodiesel production from microalgal biomass using CaO catalyst synthesized from natural waste material. Renewable Energy, 136, 837–845.
  • 33. Paruthi, S., Khan, A. H., Kumar, A., Kumar, F., Hasan, M. A., Magbool, H. M., & Manzar, M. S. (2023). Sustainable cement replacement using waste eggshells: A review on mechanical properties of eggshell concrete and strength prediction using artificial neural network. Case Studies in Construction Materials, 18, e02160.
  • 34. Peng, Y. P., Amesho, K. T., Chen, C. E., Jhang, S. R., Chou, F. C., & Lin, Y. C. (2018). Optimization of biodiesel production from waste cooking oil using waste eggshell as a base catalyst under a microwave heating system. Catalysts, 8(2), 81.
  • 35. Rezaei, R., Mohadesi, M., & Moradi, G. R. (2013). Optimization of biodiesel production using waste mussel shell catalyst. Fuel, 109, 534–541.
  • 36. Roschat, W., Siritanon, T., Kaewpuang, T., Yoosuk, B., & Promarak, V. (2016). Economical and green biodiesel production process using river snail shells-derived heterogeneous catalyst and co-solvent method. Bioresource technology, 209, 343–350.
  • 37. Sahani, S., Banerjee, S., & Sharma, Y. C. (2018). Study of’co-solvent effect’on production of biodiesel from Schleichera Oleosa oil using a mixed metal oxide as a potential catalyst. Journal of the Taiwan Institute of Chemical Engineers, 86, 42–56.
  • 38. Sajadi, S. M., Kolo, K., Abdullah, S. M., Hamad, S. M., Khalid, H. S., & Yassein, A. T. (2018). Green synthesis of highly recyclable CuO/eggshell nanocomposite to efficient removal of aromatic containing compounds and reduction of 4-nitrophenol at room temperature. Surfaces and Interfaces, 13, 205–215.
  • 39. Shan, R., Chen, G., Yan, B., Shi, J., & Liu, C. (2015). Porous CaO-based catalyst derived from PSS-induced mineralization for biodiesel production enhancement. Energy Conversion and Management, 106, 405–413.
  • 40. Singh, V., Yadav, M., & Sharma, Y. C. (2017). Effect of co-solvent on biodiesel production using calcium aluminium oxide as a reusable catalyst and waste vegetable oil. Fuel, 203, 360–369.
  • 41. Tanpure, S., Ghanwat, V., Shinde, B., Tanpure, K., & Lawande, S. (2022). The eggshell waste transformed green and efficient synthesis of K-Ca (OH) 2 catalyst for room temperature synthesis of chalcones. Polycyclic Aromatic Compounds, 42(4), 1322–1340.
  • 42. Usman, M., Salama, E. S., Arif, M., Jeon, B. H., & Li, X. (2020). Determination of the inhibitory concentration level of fat, oil, and grease (FOG) towards bacterial and archaeal communities in anaerobic digestion. Renewable and Sustainable Energy Reviews, 131, 110032.
  • 43. Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: context, process, and purpose. The American Statistician, 70(2), 129–133.
  • 44. Yan, S., Kim, M., Salley, S. O., & Ng, K. S. (2009). Oil transesterification over calcium oxides modified with lanthanum. Applied Catalysis A: General, 360(2), 163–170.
  • 45. Yusuff, A. S., Gbadamosi, A. O., & Popoola, L. T. (2021). Biodiesel production from transesterified waste cooking oil by zinc-modified anthill catalyst: Parametric optimization and biodiesel properties improvement. Journal of Environmental Chemical Engineering, 9(2), 104955.
  • 46. Zabeti, M., Daud, W. M. A. W., & Aroua, M. K. (2009). Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology. Applied Catalysis A: General, 366(1), 154–159.
  • 47. Zhang, S., Han, A., Zhai, Y., Zhang, J., Cheong, W. C., Wang, D., & Li, Y. (2017). ZIF-derived porous carbon supported Pd nanoparticles within mesoporous silica shells: sintering-and leaching-resistant core–shell nanocatalysts. Chemical Communications, 53(68), 9490–9493.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec6a2d65-dc4c-4aff-8975-118d93b7153a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.