PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes in the concentrations of selected toxic and essential elements in ewe milk from area with a potentially undisturbed environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to evaluate the effect of lactation on the concentration of selected essential and toxic elements in sheep milk forma area of Slovakia with potentially undisturbed environment and to find the actual contamination of selected area, in view of its environmental character. The research was conducted with 400 sheep (Tsigai breed), where the milk samples were taken during the lactation periods (early, middle and late lactation stage). Sheep were reared on the extensive pastures, reared indoors afterwards, fed with pasture ad libidum. Milk samples were collected after morning and afternoon milking. The samples of milk were analysed toxic and essential elements (Ca, Se, Mg, Zn, Fe, Cu, As, Cd, Hg, Ni, Pb) by the method of atomic absorption spectroscopy (AAS). The macro elements concentration in milk changes following the stages of lactation (p < 0.05). There was found that Ca milk concentration increased gradually in the following stages of lactation while Mg, Se, and Fe only in the last stage of lactation. With order hand, the milk concentration of Zn was the highest during summer (p < 0.05). Simultaneously the contents of essential elements (Cu) and toxic elements (As, Cd, Hg, Ni, Pb) in milk were very low, below the limit of quantification. In conclusion, ewe’s milk from potentially undisturbed environmental areas of Slovakia is safe and poses no risk to consumer health, and is suitable for use directly or in dairy processing.
Rocznik
Strony
28--34
Opis fizyczny
Bibliogr. 35 poz., tab.
Twórcy
  • Faculty of Agrobiology and Food Resources, Department of Veterinary Disciplines, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovak Republic
  • Faculty of Agrobiology and Food Resources, Department of Veterinary Disciplines, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovak Republic
autor
  • Faculty of Agrobiology and Food Resources, Department of Veterinary Disciplines, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovak Republic
  • Faculty of Agrobiology and Food Resources, Department of Veterinary Disciplines, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovak Republic
Bibliografia
  • [1] Licata P, Trombetta D, Cristani M, Giofre F, Martino D, Calo M, Naccari F. Levels of “toxic” and “essential” metals in samples of bovine milk from various dairy farms in Calabria, Italy. Environment International. 2004;30(1):1– 6. doi: https://doi.org/10.1016/S0160-4120(03)00139-9.
  • [2] Sanz Ceballos L, Ramos Morales E, de la Torre Adarve G, Diaz Castro J, Perz Martínez L, Sanz Sampelayo MR. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition and Analysis. 2009;22(4):322– 329. doi: https://doi.org/10.1016/j.jfca.2008.10.020.
  • [3] Kapila R, Kavadi P.K, Kapila S. Comparative evaluation of allergic sensitization to milk proteins of cow, buffalo and goat. Small Ruminant Research. 2013;112(1–3):191–198. doi: https://doi.org/10.1016/j.smallrumres.2012.11.028.
  • [4] Llobet J. M, Falcó G, Casas C, Teixidó A, Domingo JL. Concentrations of arsenic, cadmium, mercury and lead in common foods and estimated daily intake by children, adults and seniors of Catalonia, Spain. Journal of Agricultural and Food Chemistry. 2003;51(3):838–842. doi: https://doi.org/10.1021/jf020734q.
  • [5] Hilali M, El-Mayda E, Rischkowsky B. Characteristic and utilization of sheep and goat milk in the Middle East. Small Ruminant Research. 2011;101(1–3):92–101. doi: https://doi.org/10.1016/j.smallrumres.2011.09.02.
  • [6] Najarnezhad V, Akbarabadi M. Heavy metals in raw cow and ewe milk from north-east Iran; Food Additives and Contaminants, Part B: Surveillance. 2013;6(3):158–162. doi: https://doi.org/10.1080/19393210.2013.7777999.
  • [7] Rahimi E. Lead and cadmium concentrations in raw milk collected from different regions of Iran. Food Chemistry. 2013;136:389–391.
  • [8] Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG. Health risks of heavy metals in contaminated soils of food crops irrigated with wastewater in Beijing, China. Environmental Pollution. 2008;152(3):686–692. doi: https://doi. org/10.1016/j.envpol.2007.06.056.
  • [9] WHO – World Health Organization: Health risk of heavy metals form long-range transboundary air pollution [Internet]. Copenhagen: World Health Organization; 2007. [cited 2021 Sep. 29]. Available from: http://www.euro.who. int/__data/assets/pdf_file/0007/78649/E91044.pdf.
  • [10] Toman R, Tunegová M. Selenium, cadmium and diazinon insecticide in tissues of rats after peroral exposure. Potravinarstvo: Slovak Journal of Food Science. 2007;11(1):718–724. doi: https://doi.org/10.5219/827.
  • [11] Bilandžić N, Dokić M, Sedak M, Solomun M. Varenina I, Knežević Z, Benić M. Trace element levels in raw milk from northern and southern region of Croatia. Food Chemistry 2011;127(1):63–66. doi: https://doi.org/10.1016/j.foodchem.2010.12.084.
  • [12] Chovancová H, Omelka, R, Baboňová, I, Formicki, G, Toman, R, Martiniaková, M. Bone adaptation to simultaneous cadmium and diazinon toxicity in adult male rats. Potravinarstvo: Slovak Journal of Food Science. 2014;8(1):107–113. doi: https://doi.org/10.5219/343.
  • [13] Zhuang P, McBride MB, Xia H, Li N, Li Z. Health risk of heavy metals via consumption of food crops in the vicinity of Babaoshan mine, South China. The Science of the Total Environment. 2009;407(5):1551–1561. doi: https:// doi.org/10.1016/j.scitotenv.2008.10.061.
  • [14] Kazi TG, Jalbani N, Baig JA, Kandhro GA, Afridi HI, Arain MB, Jamali MK, Shah AQ. Assessment of toxic metals in raw and processed milk samples using electrothermal atomic absorption spectrophotometer. Food Chemical and Toxicology. 2009;47(9):2163–2169. doi: https://doi.org/10.1016/j.fct.2009.05.035.
  • [15] Lukačínová A, Nováková J, Lovásová E, Cimboláková I, Ništiar F. Influence of lifetime exposure of sublethal doses of cadmium to selected parameters of carbohydrate metabolism. Potravinarstvo: Slovak Journal of Food Science. 2012;6(12):36–40. doi: https://doi.org/10.5219/231.
  • [16] Cashman KD. Trace elements, nutritional significance. In: Fuquay JW, editor. Encyclopedia of Dairy Science. 2nd ed. Mississippi: Mississippi State University; 2011.
  • [17] Simsek O, Gültekin R, Öksüz O, Kurulatay S. The effect of environmental pollution on the heavy metal content of raw milk. Nahrung 2000;44(5):360–363. doi: https:// doi.org/10.1002/1521-3803(20001001)44:5<360::AIDFOOD360>3.0.CO;2-G.
  • [18] Mass S, Lucot E, Gimbert F, Crini N, Badot P-M. Trace metals in raw cow’s milk and assessment of transfer to Comté cheese. Food Chemistry. 2011;129(1):7–12. doi: https://doi.org/10.1016/j.foodchem.2010.09.034.
  • [19] Temiz H, Soylu A. Heavy metal concentrations in raw milk collected from different regions of Samsun, Turkey; International Journal of Dairy Technology. 2012;65(4): 516– 522. doi: https://doi.org/10.1111/j.1471-0307.2012.00846.x.
  • [20] Bohuš P, Klinda J. Environmentálna regionalizácia Slovenskej republiky = Environmental regionalization of Slovak Republic [Internet]. Bratislava, Banská Bystrica: Ministerstvo životného prostredia Slovenskej republiky, Slovenská agentúra životného prostredia; 2008. [cited 2021 Sep. 29]. Available from: http://www.minzp.sk/files/environmentalna-regionalizacia-sr.pdf.
  • [21] Bushra I, Saatea A, Samina S, Riaz K. Assessment of toxic metals in dairy milk and animal feed in Peshawar, Pakistan. British Biotechnology Journal. 2014;4(8):883–893. doi: https://doi.org/10.9734/BBJ/2014/9939.
  • [22] Zhou X, Qu X, Zhao S, Wang J, Li S, Zheng N. Analysis of 22 elements in milk, feed, and water of dairy cow, goat and buffalo from different regions of China. Biology Trace Elements Research. 2017;176(1):120–129. doi: https://doi.org/10.1007/s12011-016-0819-8.
  • [23] Pandey R, Srivastava SP. Spermatotoxic effects on nickel in mice. Bulletin of Environmental Contamination and Toxicology. 2008;64(2):161–167. doi: https://doi.org/10.1007/s001289910025.
  • [24] Forgács Z, Némethy Z, Révész CS, Lázár P. Specific amino acids moderate effects on Ni2+ on the testosterone production of mouse Leydig cells in vitro. Journal of Toxicology and Environmental Health. 2001;62(5):349–358. doi: https://doi.org/10.1080/152873901300018075.
  • [25] Lukáč N, Massányi P, Kročková J, Toman R, Danko J, Stawarz R, Formicki, G. Effect of nickel on male reproduction. Universal Journal of Agricultural Research 2014;2(7):250–252. doi: https://doi.org/10.13189/ujar.2014.020704.
  • [26] Kukner A, Colakoglu N, Kara H, Oner H, Ozogul C, Ozan E. Ultrastructural changes in the kidney of rats with acute exposure to cadmium and effects of exogenous metallothionein. Journal of Biology and Trace Elements. 2007;119(2):137–146. doi: https://doi.org/10.1007/s12011-007-0049-1.
  • [27] Massányi P, Lukáč N, Uhrín V, Toman R, Pivko J, Rafay J, Forgács ZS, Somosy Z. Female reproductive toxicology of cadmium. Acta Biologica Hungarica. 2007;58:287–299. doi: https://doi.org/10.1556/ABiol.58.2007.3.5.
  • [28] Anastasio A, Caggiano R, Macchiato M, Catellani P, Ragosta M, Paino S, Cortes ML. Heavy metal concentrations in dairy products from sheep milk collected in two regions of Southern Italy. Acta Veterinaria Scandinavica. 2006;47:69–74. doi: https://doi.org/10.1186/1751-0147-47-69.
  • [29] Licata P, Di Bella G, Potorti A. G, Lo Turco V, Salvo A, Dugo G. Determination of trace elements in goat and ovine milk from Calabria (Italy) by ICP-AES. Food Additives and Contaminants, Part B: Surveillance. 2012;5(4):268–271. doi: https://doi.org/10.1080/19393210.2012.705335.
  • [30] Antunovič Z, Marič I, Novoselec J, Lončarič Z, Mioč B, Engler M, Kerovec D, Samac D, Klir Ž. Effect of lactation stage on the concentration of essential and selected toxic elements in milk of Dubrovačka ruda – Croatian endangered breed. Mljekarstvo. 2016;66(4):312–321. doi: https://doi.org/10.15567/mljekarstvo.2016.0407.
  • [31] Al-Wabel NM. Mineral contents of milk of cattle, camels, goats and sheep in the central region of Saudi Arabia. Asian Journal of Biochemistry. 2008;3(6):373–375. doi: https://doi.org/10.3923/ajb.2008.373.375.
  • [32] Gerchev G, Mihaylova G. Milk yield and chemical composition of sheep milk in Strednostaroplaninska and Tetvenska breeds. Biotechnology in Animal Husbandry. 2012;28(2):241–251. doi: https://doi.org/10.2298/BAH1202241G.
  • [33] Dobrzański Z, Kołacz R, Górecka H, Chojnacka K, Bartkowiak A. The content of microelements and trace elements in raw milk from cows in the Silesian region. Polish Journal of Environmental Studies. 2005;14(5):685–689.
  • [34] Herwing N, Stephen K, Panne U, Pritzkow W, Vogl J. Multielement screening in milk and feed by SF-ICP-MS. Food Chemistry. 2011;124(3):223–1230. doi: https://doi.org/10.1016/j.foodchem.2010.07.050.
  • [35] Komperej A, Drobnič M, Kompan D. Milk yield and milk traits in Slovenian sheep breeds. Acta Agr Kaposováriensis. 1999;3:97–106.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec689e1c-1c16-4962-b74a-36e7ee4a79ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.