PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crystallographic texture and anisotropy of electrolytic deposited copper coating analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To investigate of texture and microstructure of electrodeposited copper thin films. Design/methodology/approach: Influence of the electrodepositing parameters e.g. applied electric current as variable on texture formation of copper films was studied at presented work. Experiment was done for copper deposition from sulphate bath under galvanostatic and pulse current with different additives in the bath. X-ray examination included texture measurements phase analysis by means of Bragg-Brentano, grazing incidence diffraction and crystallite size using broadening of X-ray diffraction line. Findings: Electrodeposited copper coatings exhibit different texture and microstructure depending on applied conditions in which they were obtained. Pulse and direct current conditions leads to different texture of electrodeposited copper coatings. For each type of current texture depends on deposition time and current intensity. Only in some cases {111} component was obtained. Research limitations/implications: extures of the investigated samples are very sensitive for applied current conditions of electrodepositing. At the copper coatings obtained with reverse current texture components {110} is dominating one. Relations between texture and properties (hardness, Young module and grain size) of copper layer were found. Originality/value: The texture of electrodeposited copper should be influential structural characteristic when anisotropy is considered. It is already known that electromigration depends on texture of copper films.
Rocznik
Strony
264--268
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] A. Ibanez, E. Fatas, Mechanical and structural properties of electrodeposited copper and their relation with the electrodeposition parameters, Surface & Coatings Technology 191/1 (2005) 7-16.
  • [2] A.L. Fan, Sh.K. Li, W.H. Tian, Grain growth and texture evolution in electroformed copper liners of shaped charges, Materials Science and Engineering A 474 (2008) 208-213.
  • [3] A.U. Mane, S.A. Shivashankar, Growth of (111)-textured copper thin films by atomic layer deposition, Journal of Crystal Growth 275/1-2 (2005) 1253-57.
  • [4] B. Hong, C. Jiang, X. Wang, Influence of complexing agents on texture formation of electrodeposited copper, Surface & Coatings Technology 201/16-17 (2007) 7449-7452.
  • [5] S.J. Skrzypek, A. Baczmański, W. Ratuszek, E. Kusior, New approach to stress analysis based on grazing-incidence X-ray diffraction, Journal of Applied Crystallography 34/4 (2001) 427-435.
  • [6] C.H. Seah, S. Mridha, L.H. Chan, Fabrication of D.C.-plated nanocrystalline copper electrodeposits, Journal of Materials Processing Technology 89-90 (1999) 432-436.
  • [7] S. Lagrange, S.H. Brongersma, M. Judelewicz, A. Saerens, I. Vervoort, E. Richard, R. Palmans, K. Maex, Self-annealing characterization of electroplated copper films, Microelectronic Engineering 50/1-4 (2000) 449-457.
  • [8] Y. Zhou, C. Yang, J. Chen, G. Ding, W. Ding, L. Wang, M. Wang, Y. Zhang, T. Zhang, Measurement of Young’s modulus and residual stress of copper film electroplated on silicon wafer, Thin Solid Films 460/1-2 (2004) 175-180.
  • [9] L.G. Schultz, A Direct method of determining preferred orientation of a flat reflection sample using Geiger counter X-ray spectrometer, Journal Applied Physics 20/11 (1949) 1030 - 1033.
  • [10] H.J. Bunge, Matematischen Methoden der Texturanalyese, Berlin Akademie-Verlag, 1969.
  • [11] A. Baczmański, Stress field in polycrystalline materials studied using diffraction and self-consistent modeling, Department of Physics and Applied Computer Science AGH, Cracow, 2005.
  • [12] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prenttice Hall (2003).
  • [13] T. Hara, T. Yamasaki, K. Kinoshita, Grain sizes in electroplated thin copper interconnection layers, Journal of the Electrochemical Society 153/12 (2006) 1059-1063.
  • [14] S.J. Skrzypek, New approach to residual macro-stresses measurement due to grazing angle X-ray diffraction geometry, Dissertations and Monographs 108, Institutional Learning and Scientific Publishing AGH, Cracow, 2002.
  • [15] L.A. Dobrzański, S.J. Skrzypek, D. Pakuáa, J. Mikuła, Residual macro-stresses of PVD and CVD coatings deposited on tool ceramics substrates measured with application of the grazing angle X-ray diffraction geometyry, Contemporary Achievements In Mechanics, Manufacturing And Materials Science (2005) 271-276.
  • [16] S. J.Skrzypek, T. Borowski, J. Jeleńkowski, T. Wierzchoń, Gradient like structural properties of nitrogen–saturated austenite layers produced on N27T2JMnM steel, Contemporary Achievements In Mechanics, Manufacturing And Materials Science (2005) 1102-1105.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec660e66-9020-48fd-9156-ff08b6aa77c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.