Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The built-up index was developed to "mapping" built-up areas using publicly available satellite images. However, its biggest problem is not distinguishing between built-up areas and bare soils. This distinction is fundamental to automatic mapping. Therefore, numerous approaches to delimitation appear in the literature, proposing different solutions to eliminate errors during the automatic process. The study aimed to select the most appropriate built-up index for automatic delimitation of areas related to the Upper Silesian Conurbation. Preliminary work was based on a literature review of the use of various built-up indexes. In the next step, the most useful indicators in the context of automatic delimitation of these areas were selected. In this work, comparative analyses of the built-up indexes proposed in the literature were carried out on the example of the city of Gliwice so that their usefulness and adequacy for the delimitation of built-up areas in the Upper Silesian conurbation could be determined. Analyses were carried out using open spatial data and using GIS tools such as ArcGIS and SAGA. Indicators were calculated using selected Landsat 7 and Landsat 8 satellite images. From the indicators selected, the MBUI appear to be the most useful, besides the basic one i.e., widely used in development de-limitation calculations, NDBI. However, each of these indicators has weaknesses that cause the automatic delimitation process generate some errors. There should therefore be further research in this area.
Czasopismo
Rocznik
Tom
Strony
31--43
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- IETU Institute of Ecology of Industrial Areas, 6 Kossutha St.40-844 Katowice, Poland
Bibliografia
- [1] Adla K.,Dejan K.,Neira D.,Dragana Š.:Chapter 9 -Degradation of Ecosystems and Loss of Ecosystem Services. In One Health; Prata, J.C., Ribeiro, A.I., Rocha-Santos, T., Eds.; Academic Press, 2022; pp. 281–327 ISBN 978-0-12-822794-7.
- [2] Fischer J.,Lindenmayer D.B.:Landscape Modification and Habitat Fragmentation: A Synthesis. Global Ecology and Biogeography 2007, 16, 265–280.Doi:https://doi.org/10.1111/j.1466-8238.2007.00287.x.
- [3] Haddad N.M.,Brudvig L.A.,Clobert J.,Davies K.F.,Gonzalez A.,Holt R.D.,Lovejoy T.E.,Sexton J.O.,Austin M.P.,Collins C.D.,et al.:Habitat Fragmentation and Its Lasting Impact on Earth’s Ecosystems. Sci Adv 2015, 1, doi:10.1126/sciadv.1500052.
- [4] Starzewska-Sikorska A.:Integrated Environmental Management of Land and Soil in European Urban Areas; Works and Studies; Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk: Zabrze, 2021; ISBN 978-83-60877-19-7.
- [5] Czerny M.,Czerny A.:Models for the Spatial Development of Medium-Sized Cities in Poland in the Era of Transformation as Exemplified by Puławy, Płock and Siedlce. Olsztyn Economic Journal 2019, 14, 5–26, doi:10.31648/oej.3625.
- [6] Heffner K.,Twardzik M.:The Impact of shopping centers in rural areas and small towns in the outer metropolitan zone (The Example of the Silesian Voivodeship).European Countryside 2015, 7, 87–100, doi:10.1515/euco-2015-0006.
- [7] Głogowska M.:Reduction of Forest and Agriculture Land on Urban Areas Basing on the Analysis of Statistical and Spatial Data. In Integrated environmental management of land and soil in European urban areas; Works and Studies; 2021; pp. 87–115 ISBN 978-83-60877-19-7.
- [8] Urban Atlas —Copernicus Land Monitoring Service Available online: https://land.copernicus.eu/local/urban-atlas (accessed on 2April2025).
- [9] Zha Y.,Gao J.,Ni S.:Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. International Journal of Remote Sensing 2003, 24, 583–594, doi:10.1080/01431160304987.
- [10] He C.,Shi P.,Xie D.,Zhao Y.:Improving the Normalized Difference Built-up Index to Map Urban Built-up Areas Using a Semiautomatic Segmentation Approach. Remote Sensing Letters 2010, 1, 213–221, doi:10.1080/01431161.2010.481681.
- [11] Sukrisyanti Suharyadi R.,Jatmiko R.H.:Evaluasi Indeks Urban Pada Citra Landsat Multitemporal Dalam Ekstraksi Kepadatan Bangunan. Riset Geologi dan Pertambangan -Geology and Mining Research 2007, 17, 1–10, doi:10.14203/risetgeotam2007.v17.153.
- [12] Conrad O.,Bechtel B.,Bock M.,Dietrich H.,Fischer E.,Gerlitz L.,Wehberg J.,Wichmann V.,Böhner J.:System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development 2015, 8, 1991–2007, doi:10.5194/gmd-8-1991-2015.
- [13] Kawamura M.:Relation between Social and Environmental Conditions in Colombo, Sri Lanka and the Urban Index Estimated by SatelliteRemote Sensing Data. International archives of photogrammetry and remote sensing 1996, 7, 321–326.
- [14] Xu H.: A New Index for Delineating Built‐up Land Features in Satellite Imagery. International Journal of Remote Sensing 2008, 29, 4269–4276, doi:10.1080/01431160802039957.
- [15] Huete A.R.:A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment 1988, 25, 295–309, doi:10.1016/0034-4257(88)90106-X.
- [16] RenH.,Zhou G.,Zhang F.:Using Negative Soil Adjustment Factor in Soil-Adjusted Vegetation Index (SAVI) for Above-ground Living Biomass Estimation in Arid Grasslands. Remote Sensing of Environment 2018, 209, 439–445, Doi:10.1016/j.rse.2018.02.068.
- [17] Xu H.: Modification of normalised difference water index (ndwi) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 2006, 27, 3025–3033, doi:10.1080/01431160600589179.
- [18] Qi Y.,Dou H.,Wang Z.:An adaptive threshold selected method from remote sensing image based on water index. J. Phys.: Conf. Ser. 2022, 2228, 012001, doi:10.1088/1742-6596/2228/1/012001.[
- 19] Lee J.,Lee S.S.,Chi K.H.:Development of an urban classification method using a built-upindex. In Proceedings of the Sixth WSEAS International Conference on Remote Sensing, Iwate Prefectural University, Japan; 2010; pp. 39–43.
- [20] As-syakur A.R.,AdnyanaI.W.S.,Arthana I.W.,Nuarsa I.W.:Enhanced built-up and bareness index (ebbi) for mapping built-up and bare land in an urban area. Remote Sensing 2012, 4, 2957–2970, doi:10.3390/rs4102957.
- [21] Sinha P.:School of Environmental and Rural Science, U. of N.E.; Verma N.K.,Ayele E.:School of Science and Technology, U. of N.E.; Department of Surveying, D.D.I. Urban Built-up Area Extraction and Change Detection of Adama Municipal Area Using Time-Series Landsat Images. International Journal of Advanced Remote Sensing and GIS 2016, 5, 1886–1895.
- [22] Prasomsup W.,Piyatadsananon P.,Aunphoklang W.,Boonrang A.:Extraction technic for built-up area classification in landsat 8 imagery. 2020, 11, 15–20, Doi:10.18178/ijesd.2020.11.1.1219.
- [23] Tin S.N.,Muttitanon W.:Analysis of enhanced built-up and bare land index (EBBI) in the urban area of Yangon, Myanmar. IJG 2021, 17, 85–96, Doi:10.52939/ijg.v17i4.1957.
- [24] Ukhnaa M.,Huo X.,Gaudel G.:Modification of urban built-up area extraction method based on the thematic index-derived bands. IOP Conf. Ser.: Earth Environ. Sci. 2019, 227, 062009, Doi:10.1088/1755-1315/227/6/062009.
- [25] Ray T.W.:Vegetation in Remote Sensing FAQs. Applications, ER Mapper, Ltd., Perth, unpaginated CD-ROM 1994.z
- [26] Shahfahad, Mourya M.,Kumari B.,Tayyab M.,Paarcha A.,Asif, Rahman A.:Indices based assessment of built-up density and urban expansion of fast growing surat city using multi-temporal landsat data sets. GeoJournal 2021, 86, 1607–1623, doi:10.1007/s10708-020-10148-w.
- [27] Landsat 7 | Landsat Science Available online: https://landsat.gsfc.nasa.gov/landsat-7 (accessed on 2 April 2025).
- [28] Earth ExplorerAvailable online: https://earthexplorer.usgs.gov/ (accessed on 28 August 2024).
- [29] Application -GloVisAvailable online: https://glovis.usgs.gov/app (accessed on 28 August 2024).
- [30] GIS Geography Landsat 8 bands and band combinations available online: https://gisgeography.com/landsat-8-bands-combinations/ (accessed on 19 January 2023).
- [31] What Are the Band Designations for the Landsat Satellites? | U.S. Geological Survey Available online: https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites (accessed on 23 January 2023).
- [32] Somvanshi S.S.,Kumari M.:comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data. Applied Computing and Geosciences 2020, 7, 100032, Doi:10.1016/j.acags.2020.100032.
- [33] Rouse J.W.,Haas R.H.,Deering D.W.,Schell J.A.,Harlan J.C.:Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. 1974.
- [34] Zhao H.,Chen X.:Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. In Proceedings of the International geoscience and remote sensing symposium; 2005; Vol. 3, p. 1666.
- [35] Landsat 8 Data Users Handbook | U.S. Geological Survey Available online: https://www.usgs.gov/landsat-missions/landsat-8-data-users-handbook (accessed on 2 April 2025).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec5fa5ab-757f-47e5-9261-d4dc8f31a565
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.