PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Change of physichochemical properties and heavy metals content in sewage sludge during vermicomposting with Eisenia fetida

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to evaluate the vermicompost quality of sewage sludge (SS) mixed with sugar beet pulp (SBP) and cow dung (CD) wastes employing Eisenia fetida. The basic issue faced in the wastewater treatment plant is how to reduce the amount of sewage sludge? This paper discusses an in-situ vermicomposting approach for the reuse of sewage sludge. A total of 11 reactors containing various waste combinations were organized and changes in physicochemical parameters were evaluated during 90 days of the experiment. The results indicated that SS could be converted into a good quality product by vermicomposting if suitable mixing quantities are provided (50% SS, 25% SBP, 25% CD). Vermicomposting caused significant reductions in pH, TOC, the content of heavy metals, and C/N ratio, while electric conductivity and NPK content increased as compared to initial mixtures. The present study implied that the application of sewage sludge in the agricultural fields after vermicomposting could be a suitable and usable approach for sewage disposal.
Rocznik
Strony
17--27
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Erciyes University, Department of Environmental Engineering, Kayseri, Turkey
Bibliografia
  • [1] Directive 2008/1/EC of the European Parliament and of the Council of 15 January 2008 concerning integrated pollution prevention and control, Official Journal of the European Union (cited 20 December 2018), Available from https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:024:0008: 0029:EN:PDF
  • [2] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control) [Internet]. Official Journal of the European Union [cited 20 December 2018]. Available from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0075
  • [3] JRC Scientific and Policy Reports. Technical report for end-of-waste criteria on biodegradable waste subject to biological treatment (compost & digestate). Hans Saveyn and Peter Eder, 2014 (cited 12 March 2019), available from http://publications.jrc.ec.europa.eu/repository/bitstream/JRC87124/eow%20biodegradable%20waste%20final%20report.pdf
  • [4] KACPRZAK A., NECZAJ E., FIJAŁKOWSKI K., GROBELAK A., GROSSER A., WORWAG M., RORAT A.,BRATTEBO H., ALMAS A., SINGH B.R., Sewage sludge disposal strategies for sustainable development, Environ. Res., 2007, 156, 39–46.
  • [5] MININNI G., BLANCH A.R., LUCENA F., BERSELLI S., EU policy on sewage sludge utilization and perspectives on new approaches of sludge management, Environ. Sci. Pollut. Res., 2015, 22, 7361–7374.
  • [6] PRITCHARD D.L., PENNEY N., MCLAUGHLIN M.J., RIGBY H., SCHWARZ K., Land application of sewage sludge (biosolids) in Australia. Risks to the environment and food crops, Water Sci. Technol., 2010, 62,48–57.
  • [7] DRECHSEL P., QADIR M., WICHELNS D., Wastewater. Economic asset in an urbanizing world, Springer, 2015, 86–89.
  • [8] YANG G., ZHANG G., WANG H., Current state of sludge production, management, treatment and disposal in China, Water Res., 2015, 78, 60–73.
  • [9] ADAR E., KARATOP B., INCE M., BILGILI M.S., Comparison of methods for sustainable energy management with sewage sludge in Turkey based on SWOT-FAHP analysis, Renew Sust. Energ. Rev., 2016, 62, 429–440.
  • [10] Eurostat 2015. Sewage sludge disposal from urban wastewater treatment, by type of treatment. Eurostat statistics explained, 2015 (cited 24 March 2019), available from https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Sewage_sludge_disposal_from_urban_wastewater_treatment,_ by_type of_treatment, 2015_(%25_of_total_mass)_V2.png
  • [11] Turkish Statistical Institute Official Internet Site, TUIK:2014 (cited 12 May 2019), available from http://www.tuik.gov.tr/Start.do
  • [12] SUTHAR S., Vermicomposting of vegetable market solid waste using Eisenia foetida: impact of bulking material on earthworm growth and decomposition rate, Ecol. Eng., 2009, 35, 914–920.
  • [13] AMOUEI A.I., YOUSEFI Z., KHOSRAVI T., Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes, J. Environ. Health Sci. Eng., 2017, 15, 5.
  • [14] ADILOĞLU S., AÇIKGÖZ F.E., SOLMAZ Y., ÇAKTÜ E., ADILOĞLU A., Effect of vermicompost on thegrowth and yield of lettuce plant (Lactuca sativa L. var. crispa), Int. J. Plant Soil Sci., 2018, 21, 1–5.
  • [15] KUMAR A., DHYANI B.P., RAI A., KUMAR V., Residual effect of applied vermicompost and NPK to rice on growth and yield of succeeding wheat and chemical properties of soil, Int. J. Curr. Microbiol. App. Sci., 2017, 6, 1087–1098.
  • [16] GUPTA R., GARG V.K., Stabilization of primary sewage sludge during vermicomposting, J. Hazard. Mater., 2008, 153, 1023–1030.
  • [17] SULEIMAN H., RORAT A., GROBELAK A., GROSSER A., MILCZAREK M., PŁYTYCZ B., KACPRZAK M., VANDENBULCKE F., Determination of the performance of vermicomposting process applied to sewage sludge by monitoring of the compost quality and immune responses in three earthworm species. Eisenia fetida, Eisenia andrei and Dendrobaena veneta, Bioresour. Technol., 2017, 241, 103–112.
  • [18] ZHU W., YAO W., ZHANG Z., WU Y., Heavy metal behavior and dissolved organic matter (DOM) characterization of vermicomposted pig manure amended with rice straw, Environ. Sci. Pollut. R., 2014, 21, 12684–12692.
  • [19] KHWAIRAKPAM M., BHARGAVA R., Vermitechnology for sewage sludge recycling, J. Hazard. Mater., 2009, 161, 948–954.
  • [20] SOOBHANY N., Preliminary evaluation of pathogenic bacteria loading on organic Municipal Solid Waste compost and vermicompost, J. Environ. Manage., 2018, 206, 763–767.
  • [21] KUMAR R., VERMA D., SINGH B.L., SHWETA U.K., Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting, Bioresour. Technol., 2010, 101, 6707–6711.
  • [22] ZHANG L., SUN X., Influence of sugar beet pulp and paper waste as bulking agents on physical, chemical, and microbial properties during green waste composting, Bioresour. Technol., 2018, 267, 182–191.
  • [23] RATTI C., Hot air and freeze-drying of high-value foods. A review, J. Food Eng., 2001, 49, 311–319.
  • [24] LENORE S., ARNOLD E., ANDREW D.E., Standard methods for the examination of water and wastewater, 20th Ed., American Public Health Association, 1998, 5310-TOC.
  • [25] LENORE S., ARNOLD E., ANDREW D.E., Standard methods for the examination of water and wastewater, 20th Ed., American Public Health Association, 1998, 2510-EC.
  • [26] NDEGWA P.M., THOMPSON S.A., Integrating composting and vermicomposting in the treatment of bioconversion of biosolids, Bioresour. Technol., 2001, 76, 107–112.
  • [27] TOGNETTI C., LAOS F., MAZZARINO M.J., HERNANDEZ M.T., Composting vs. vermicomposting: a comparison of end product quality, Sci. Compost. Util., 2005, 13, 6–13.
  • [28] SHARMA K., GARG V.K., Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.), Bioresour. Technol., 2018, 250, 708–715.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec5eaf99-0f72-40f5-86f2-cc846d566695
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.