PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomechanical analysis of head injury causedby a charge explosion under an armored vehicle

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the authors developed the numerical model of brain structure to assess brain injury of a person in military conditions. The numerical model aimed at analyzing changes in the mechanical parameters of brain structure in the conditions of rapid overload. The results of our investigation are intended to contribute to the explanation of the phenomena of degradation of brain structures among soldiers.
Rocznik
Strony
3--15
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • University of Zielona Góra Faculty of Mechanical Engineering Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
autor
  • Nobo Solutions S.A. – Nobo Solutions al. Kasztanowa 3a-5, 53-125 Wrocław, Poland
  • Military University of TechnologyFaculty of Mechanical EngineeringKaliskiego 2, 00-908 Warszawa, Poland
  • University of Zielona GóraFaculty of Mechanical EngineeringProf. Z. Szafrana 4, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] E. Lanier Summerall. Report of (VA) Consensus Conference: Practice Recommendations for Treatment of Veterans with Comorbid TBI, Pain, and PTSD. 17 pages, 2010.
  • [2] http://dvbic.dcoe.mil/dod-worldwide-numbers-tbi.
  • [3] Independent Review Group. Report on Rebuilding the Trust: Rehabilitative Care and Administrative Processes at Walter Reed Army Medical Center and National Naval Medical Center . 129 pages, April 2007. http://www.nvti.ucdenver.edu/resources/VETSNET/vol15no2/IRG-Report-Final.pdf.
  • [4] T.W. McAllister. Neurobehavioral sequelae of traumatic brain injury: evaluation and management. World Psychiatry: Official Journal of the World Psychiatric Association (WPA ), 7 : 3-10, 2008. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2327235&tool=pmcentrez&rendertype=abstract.
  • [5] A.D. Gean. Brain Injury: Applications from War and Terrorism . Wolters Kluwer Health/Lippincott Williams & Wilkins, USA, 2014. https://books.google.com/books?id=nmAGBAAAQBAJ&pgis=1.
  • [6] E. Wiczkowski, A. Kędzia, A. Kania. Traumatic damage pathomechanism of cerebral vessels caused by geriatric changes. Engineering Transactions , 51 (2-3): 339-347, 2003.
  • [7] T. Klekiel. Biomechanical analysis of lower limb of soldiers in vehicle under high dynamic load from blast event. Series on Biomechanics , 29 (2-3): 14-30, 2015. http://www.imbm.bas.bg/biomechanics/uploads/Archive2015-2-3/14-30.pdf.
  • [8] National Academy of Engineering. Concussion: A National Challenge. The Bridge, 46, 132 pages, Washington, DC, 2016.
  • [9] E. Krzystała, A. Mężyk, S. Kciuk. Analysis of threat to crew posed by explosion of charge placed under wheeled armoured vehicle [in Polish]. The Journal of Science of the Gen. Tadeusz Kosciuszko Military Academy of Land Forces, 1 (159): 145–154, 2011.
  • [10] K. Miller [Ed.]. Biomechanics of the Brain. Springer Science & Business Media, 2011. https://books.google.com/books?id=XwS3lOWQXxEC&pgis=1.
  • [11] P.J. Prendergast. An analysis of theories in biomechanics. Engineering Transactions, 49 (2-3): 117-133, 2001.
  • [12] M. Ratajczak, M. Sąsiadek, R. Będziński. An analysis of the effect of impact loading on the destruction of vascular structures in the brain. Acta of Bioengineering and Biomechanics, 18, 2016. doi:10.5277/ABB-00552-2016-02.
  • [13] G. Sławiński, T. Niezgoda, W. Barnat, M. Wojtkowski. Numerical analysis of the influence of blast wave on human body, Journal of KONES Powertrain and Transport, 20 (3): 381-386, 2013.
  • [14] M. Fahlstedt, K. Baeck, P. Halldin, J. Vander Sloten, J. Goffin, B. Depreitere, S. Kleiven. Influence of impact velocity and angle in a detailed reconstruction of a bicycle accident. Proceedings of the International Research Council on the Biomechanics of Injury Conference, 40 : 787-799, 2012.
  • [15] S. Kleiven. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash Journal, 51: 81-114, 2007. http://www.ncbi.nlm.nih.gov/pubmed/18278592.
  • [16] D.W.A. Brands, P.H.M. Bovendeerd, J.S.H.M. Wismans. On the potential importance of non-linear viscoelastic material modelling for numerical prediction of brain tissue response: test and application. Stapp Car Crash Journal, 46 : 103-121, 2002. http://www.ncbi.nlm.nih.gov/pubmed/17096221.
  • [17] M. Horanin-Dusza. The analysis of the biomechanical and histological properties of cerebral bridging veins in alcoholics and nonalcoholics – the importance in the subdural hematomas etiology [in Polish]. PhD Thesis, Medical University, Wrocław, Poland, 2009.
  • [18] J.H. McElhaney, P.I. Mate, V.L. Roberts. A new crash test device – “Repeatable Pete”. Proceedings of 17th Stapp Car Crash Conference, 1973. doi:10.4271/730983.
  • [19] A. Schaller, C. Voigt, H. Huempfner-Hierl, A. Hemprich, T. Hierl. Transient finite element analysis of a traumatic fracture of the zygomatic bone caused by a head collision. International Journal of Oral and Maxillofacial Surgery, 41 (1): 66-73, 2012. doi:10.1016/j.ijom.2011.09.004.
  • [20] J.A. Galbraith, L.E. Thibault, D.R. Matteson. Mechanical and electrical responses of the squid giant axon to simple elongation. Journal of Biomechanical Engineering, 115 : 13-22, 1993. http://www.ncbi.nlm.nih.gov/pubmed/8445893.
  • [21] D.I. Shreiber, A.C. Bain, D.F. Meaney. In vivo thresholds for mechanical injury to the blood-brain barrier. Proceedings of 41st Stapp Car Crash Conference, 1997.
  • [22] A.C. Bain, D.F. Meaney. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. Journal of Biomechanical Engineering, 122 (6): 615-622, 2000. http://www.ncbi.nlm.nih.gov/pubmed/11192383.
  • [23] L. Zhang, K.H. Yang, A.I. King. A proposed injury threshold for mild traumatic brain injury. Journal of Biomechanical Engineering, 126 (2): 226–236, 2004. http://www.ncbi.nlm.nih.gov/pubmed/15179853.
  • [24] C. Deck, R. Willinger. Improved head injury criteria based on head FE model. International Journal of Crash- worthiness, 13 (6): 667-678, 2008. http://dx.doi.org/10.1080/13588260802411523.
  • [25] C. Zhou, T.B. Khalil, A.I. King. A new model comparing impact responses of the homogeneous and inhomogeneous human brain. SAE Technical Paper 952714. Proceedings of 39th Stapp Car Crash Conference, 1995. doi:10.4271/952714.
  • [26] M. Claessens, F. Sauren, J. Wismans. Modeling of the human head under impact conditions: A parametric study. Proceedings of 41st Stapp Car Crash Conference, 1997. doi:10.4271/973338.
  • [27] R.T. Miller, S.S. Margulies, M. Leoni, M. Nonaka, X. Chen, D.H. Smith. Finite element modeling approaches for predicting injury in an experimental model of severe diffuse axonal injury. SAE Technical Paper 983154, 1998. doi:10.4271/983154.
  • [28] D.W. Anderson, W.D. Kalsbeek, T.D. Hartwell. The national head and spinal cord injury survey. Journal of Neurosurgery, 53 , Suppl: S19-31, 1980.
  • [29] J.A. Newman. A generalized acceleration model for brain injury threshold (GAMBIT). Proceedings of International Conference on the Biomechanics of Impact, pp. 121-131, 1986.
  • [30] R. Willinger, D. Baumgartner. Human head tolerance limits to specific injury mechanisms. International Journal of Crashworthiness, 8 (6): 605-617, 2003. doi:10.1533/ijcr.2003.0264.
  • [31] D. Baumgartner, R. Willinger, N. Shewchenko, M.C. Beusenberg. Tolerance limits for mild traumatic brain injury derived from numerical head impact replication. Proceedings of the International Conference on the Biomechanics of Impacts (IRCOBI), Isle of Man, 29 : 353-355, 2001.
  • [32] D. Baumgartner, R. Willinger. Numerical modeling of the human head under impact: new injury mechanisms and tolerance limits. In: IUTAM Symposium on Impact Biomechanics: From Fundamental Insights to Applications, M.D. Gilchrist [Ed.]. Springer, pp. 195-203, 2005. doi:10.1007/1-4020-3796-120.
  • [33] R.W.G. Anderson, C.J. Brown, P.C. Blumbergs, G. Scott, J.W. Finney, N.R. Jones, A.J. McLean. Mechanisms of axonal injury: an experimental and numerical study of a sheep model of head impact. Proceedings of the International Conference on the Biomechanics of Impact (IRCOBI ), Sitges, Spain, pp. 107-120, 1999.
  • [34] N. Famaey, Z. Ying Cui, G. Umuhire Musigazi, J. Ivens, B. Depreitere, E. Verbeken, J.V. Sloten. Structural and mechanical characterisation of bridging veins: A review. Journal of the Mechanical Behavior of Biomedical Materials, 41: 222-240, 2015. doi:10.1016/j.jmbbm.2014.06.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec558635-0ae0-4921-99da-0d161a6c8eff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.