PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical determination of the hydrodynamic coefficients of an autonomous underwater vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computational fluid dynamics (CFD) has progressed rapidly in the past fifty years and is now used in many industrial fields, such as air, space, and marine engineering. CFD has an irreplaceable role in marine design and scientific research, and its applications within this field continue to grow with the development of computers. CFD is used to quickly and inexpensively simulate fluid behaviour using the Reynolds Averaged Navier–Stokes (RANS) equations to calculate hydrodynamic coefficients, which are needed in manoeuvrability studies of underwater vehicles (UWV). Here, these computations are performed for six geometrical shapes that represent typical autonomous underwater vehicles (AUVs) currently in use. Resistance test simulations at up to 20o drift angles were conducted for AUVs with different length-to-diameter ratios. The results were compared with the experimental data and current quasi-experimental relationships, which suggested that the CFD predictions were adequately precise and accurate. These predictions indicated that there was a non-linear relationship between forces and moments and the lateral speed. Moreover, both linear and non-linear hydrodynamic coefficients were calculated.
Rocznik
Strony
124--135
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Amirkabir University of Technology, Tehran, Iran
  • Amirkabir University of Technology, Tehran, Iran
Bibliografia
  • 1. Azarsina, F. & Williams, C.D. (2010) Manoeuvring simulation of the MUN Explorer AUV based on the empirical hydrodynamics of axi-symmetric bare hulls. Applied Ocean Research 32 (4), pp. 443–453.
  • 2. Azarsina, F., Williams, C. & Issac, M. (2008) Modelling the hydrodynamic sway force exerted on the bare-hull of an axi-symmetric underwater vehicle in lateral acceleration manoeuvres. OCEANS 2008, IEEE.
  • 3. Blidberg, D.R. (2001) The development of autonomous underwater vehicles (AUV); a brief summary. ICRA, IEEE.
  • 4. Dantas, J.L.D. & de Barros, E.A. (2013) Numerical analysis of control surface effects on AUV manoeuvrability. Applied Ocean Research 42, pp. 168–181.
  • 5. Fan, S.-B., Lian, L., Ren, P. & Huang, G.-L. (2012) Oblique towing test and maneuver simulation at low speed and large drift angle for deep sea open-framed remotely operated vehicle. Journal of Hydrodynamics, Ser. B 24 (2), pp. 280–286.
  • 6. Ferziger, J.H., Peric, M. & Leonard, A. (1997) Computational methods for fluid dynamics. AIP.
  • 7. Gao, T., Wang, Y., Pang, Y. & Cao, J. (2016) Hull shape optimization for autonomous underwater vehicles using CFD. Engineering Applications of Computational Fluid Mechanics 10 (1), pp. 599–607.
  • 8. Gentaz, L., Guillerm, P.E., Alessandrini, B. & Delhommeau, G. (1999) Three-dimensional free surface viscous flow around a ship in forced motion. 7th International Conference on Numerical Ship Hydrodynamics.
  • 9. Kim, Y.-G., Kim, S.-Y., Kim, H.-T., Lee, S.-W. & Yu, B.-S. (2007) Prediction of the maneuverability of a large container ship with twin propellers and twin rudders. Journal of Marine Science and Technology 12 (3), pp. 130–138.
  • 10. Li, G. & Duan, W.-Y. (2011) Experimental study on the hydrodynamic property of a complex submersible. Journal of Ship Mechanics 15 (1–2), pp. 58–65.
  • 11. Myring, D.F. (1976) A theoretical study of body drag in sub-critical axisymmetric flow. Aeronautical Quarterly 27 (3), pp. 186–194.
  • 12. Nazir, Z., Su, Y.-M. & Wang, Z.-L. (2010) A CFD based investigation of the unsteady hydrodynamic coefficients of 3-D fins in viscous flow. Journal of Marine Science and Application 9 (3), pp. 250–255.
  • 13. Obreja, D., Nabergoj, R., Crudu, L. & Păcuraru-Popoiu, S. (2010) Identification of hydrodynamic coefficients for manoeuvring simulation model of a fishing vessel. Ocean Engineering 37 (8), pp. 678–687.
  • 14. Pan, Y.-C., Zhang, H.-X. & Zhou, Q.-D. (2012) Numerical prediction of submarine hydrodynamic coefficients using CFD simulation. Journal of Hydrodynamics, Ser. B 24 (6), pp. 840–847.
  • 15. Ray, A., Singh, S. & Seshadri, V. (2009) Evaluation of linear and nonlinear hydrodynamic coefficients of underwater vehicles using CFD. ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers.
  • 16. Roache, P.J. (1997) Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics 29 (1), pp. 123–160.
  • 17. Sarkar, T., Sayer, P. & Fraser, S. (1997) A study of autonomous underwater vehicle hull forms using computational fluid dynamics. International Journal for Numerical Methods in Fluids 25 (11), pp. 1301–1313.
  • 18. Tyagi, A. & Sen, D. (2006). Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach. Ocean Engineering 33 (5), pp. 798–809.
  • 19. Williams, C., Curtis, T., Doucet, J., Issac, M. & Azarsina, F. (2006) Effects of hull length on the hydrodynamic loads on a slender underwater vehicle during manoeuvres. OCEANS 2006, IEEE.
  • 20. Wilson, R., Paterson, E. & Stern, F. (1998) Unsteady RANS CFD method for naval combatant in waves. In Proceedings of the 22nd Symposium on Naval Hydrodynamics, Washington, D.C., pp. 532–549.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec53550a-8d26-4754-bab3-a01c2c9db6cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.