PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innovative air conditioning system with rational distribution of thermal load

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The efficiency of air conditioning (AC) systems depends on the operation of their air coolers at varying heat loads in response to current changeable climatic conditions. The intensity of heat transfer of refrigerant, evaporated inside air coils, drops at the final stage of evaporation, that is caused by drying out the inner wall surface. This results in lowering the overall heat transfer coefficient and reduction of air cooler efficiency in the whole. The concept of overfilling air coils that leads to excluding a dry-out of their inner surface and falling the overall heat transfer intensity at variation of refrigerant flows in response to change of current thermal load on air coolers is developed.
Rocznik
Strony
143--154
Opis fizyczny
Bibliogr. 53 poz., rys., wykr.
Twórcy
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
  • Koszalin University of Technology, 2 Śniadeckich Street, Koszalin 75-453, Poland
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
  • Lviv Polytechnic National University, 12 Bandera Street, Lviv, Ukraine
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
Bibliografia
  • [1] Rodriguez-Aumente P.A., Rodriguez-Hidalgo M.C., Nogueira J.I., Lecuona A., Venegas M.C., District heating and cooling for business buildings in Madrid, Applied Thermal Engineering, Vol. 50, 2013, pp. 1496-1503.
  • [2] Ortiga J., Bruno J.C., Coronas A., Operational optimization of a complex trigeneration system connected to a district heating and cooling network, Applied Thermal Engineering, Vol. 50, 2013, pp. 1536-1542.
  • [3] Trushliakov E., Radchenko A., Radchenko M., Kantor S., Zielikov O., The Efficiency of refrigeration capacity regulation in the ambient air conditioning systems [in:] Ivanov V. et al. (eds.), Advances in Design, Simulation and Manufacturing III (DSMIE 2020), LNME, Springer, Cham 2020, pp. 343-353.
  • [4] Freschi F., Giaccone L., Lazzeroni P., Repetto M., Economic and environmental analysis of a trigeneration system for food-industry: A case study, Appl. Energy, Vol. 107, 2013, pp. 157-172, doi:10.1016/j.apenergy.2013.02.037.
  • [5] Trushliakov E., Radchenko A., Forduy S., Zubarev A., Hrych A., Increasing the Operation Efficiency of Air Conditioning System for Integrated Power Plant on the Base of Its Monitoring [in:] Nechyporuk M., Pavlikov V., Kritskiy D. (eds.), ICTME (ICTM 2019), AISC, Springer, Vol. 1113, Cham 2020, pp. 351-360, https://doi.org/10.1007/978-3-030-37618-5_30.
  • [6] Radchenko A., Scurtu I-C., Radchenko M., Forduy S., Zubarev A., Monitoring the efficiency of cooling air at the inlet of gas engine in integrated energy system, Thermal Science, 2020, OnLine-First Issue 00, pp. 344-344, https://doi.org/10.2298/TSCI200711344R.
  • [7] Popli S., Rodgers P., Eveloy V., Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization, Appl. Energy, Vol. 93, 2012, pp. 624-636, doi:10.1016/j.apenergy.2011.11.038.
  • [8] Popli S., Rodgers P., Eveloy V., Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry, Applied Thermal Engineering, Vol. 50, 2013, pp. 918-931, doi:10.1016/j.applthermaleng.2012.06.018.
  • [9] Radchenko A., Radchenko N., Tsoy A., Portnoi B., Kantor S., Increasing the efficiency of gas turbine inlet air cooling in actual climatic conditions of Kazakhstan and Ukraine, AIP Conference Proceedings, Vol. 2285, 2020, No. 030071, https://doi.org/10.1063/5.0026787.
  • [10] Radchenko M., Radchenko R., Tkachenko V., Kantor S., Smolyanoy E., Increasing the Operation Efficiency of Railway Air Conditioning System on the Base of Its Simulation Along the Route Line [in:] Nechyporuk M. et al. (eds.), ICTME (ICTM 2019), AISC, Springer, Vol. 1113, Cham 2020, pp. 461-467, https://doi.org/10.1007/978-3-030-37618-5_39.
  • [11] Radchenko N., Radchenko A., Tsoy A., Mikielewicz D., Kantor S., Tkachenko V., Improving the efficiency of railway conditioners in actual climatic conditions of operation, AIP Conference Proceedings, Vol. 2285, 2020, No. 030072, https://doi.org/10.1063/5.0026789.
  • [12] Radchenko M., Mikielewicz D., Tkachenko V., Klugmann M., Andreev A., Enhancement of the operation efficiency of the transport air conditioning system [in:] Ivanov V. et al. (eds.), ADSM III (DSMIE 2020), LNME, Springer, Cham 2020, pp. 332-342.
  • [13] Radchenko R., Pyrysunko M., Radchenko A., Andreev A., Kornienko V., Ship engine intake air cooling by ejector chiller using recirculation gas heat [in:] Tonkonogyi V. et al. (eds.), AMP, InterPartner-2020, LNME, Springer, Cham 2021, pp. 734-743.
  • [14] Radchenko R., Kornienko V., Pyrysunko M., Bogdanov M., Andreev A., Enhancing the Efficiency of marine diesel engine by deep waste heat recovery on the base of its simulation along the route line [in:] Nechyporuk M. et al. (eds.), ICTME, AISC, Springer, Vol. 1113, Cham 2020, pp. 337-350.
  • [15] Radchenko M., Radchenko R., Kornienko V., Pyrysunko M., Semi-empirical correlations of pollution processes on the condensation surfaces of exhaust gas boilers with water-fuel emulsion Combustion [in:] Ivanov V. et al. (eds.), DSMIE 2019, LNME, Springer, Cham 2020, pp. 853-862.
  • [16] Forduy S., Radchenko A., Kuczynski W., Zubarev A., Konovalov D., Enhancing the fuel efficiency of gas engines in integrated energy system by chilling cyclic air [in:] Tonkonogyi V. et al. (eds.), Grabchenko’s ICAMP, InterPartner-2019, LNME, Springer, Cham 2020, pp. 500-509, https://doi.org/10.1007/978-3-030-40724-7_51.
  • [17] Radchenko A., Mikielewicz D., Forduy S., Radchenko M., Zubarev A., Monitoring the fuel efficiency of gas engine in integrated energy system [in:] Nechyporuk M. et al. (eds.), ICTM 2019, AISC (2020), Springer, Vol. 1113, Cham 2020, pp. 361-370, https://doi.org/10.1007/978-3-030-37618-5_31.
  • [18] Elberry M., Elsayed A., Teamah M., Abdel-Rahman A., Elsafty A., Performance improvement of power plants using absorption cooling system, Alex. Eng. J., Vol. 57, 2018, pp. 2679-2686, doi:10.1016/j.aej.2017.10.004.
  • [19] Suamir I., Tassou S., Performance evaluation of integrated trigeneration and CO2 refrigeration systems, Appl. Therm. Eng., Vol. 50, 2013, pp. 1487-1495, doi:10.1016/j.applthermaleng.2011.11.055.
  • [20] Al-Ibrahim A.M., Varnham A., A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia, Appl. Therm. Eng., Vol. 30, 2010, pp. 1879-1888, doi:10.1016/j.applthermaleng.2010.04.025.
  • [21] Trushliakov E., Radchenko M., Portnoi B., Tkachenko V., Hrych A., Analysis of operation of ambient air conditioning systems with refrigeration machines of different types [in:] Nechyporuk M., Pavlikov V., Kritskiy D. (eds.), ICTME - 2020, ICTM 2020, Lecture Notes in Networks and Systems, Springer, Vol. 188, Cham 2021, pp. 545-555.
  • [22] Radchenko A., Stachel A., Forduy S., Portnoi B., Rizun O., Analysis of the Efficiency of Engine Inlet Air Chilling Unit with Cooling Towers [in:] Ivanov V., et al. (eds.), Advances in Design, Simulation and Manufacturing III (DSMIE 2020), Lecture Notes in Mechanical Engineering, Springer, Cham 2020, pp. 322-331.
  • [23] Radchenko M., Portnoi B., Kantor S., Forduy S., Konovalov D., Rational thermal loading the engine inlet air chilling complex with cooling towers [in:] Tonkonogyi V. et al. (eds.), Advanced Manufacturing Processes II, InterPartner 2020, Lecture Notes in Mechanical Engineering, Springer, Cham 2021, pp. 724-733.
  • [24] Kornienko V., Radchenko M., Radchenko R., Konovalov D., Andreev A., Pyrysunko M., Improving the efficiency of heat recovery circuits of cogeneration plants with combustion of water-fuel emulsions, Thermal Science, Vol. 25, Issue 1, Part В, 2021, pp. 791-800, doi: 10.2298/TSCI200116154K.
  • [25] Kornienko V., Radchenko R., Konovalov D., Andreev A., Pyrysunko M., Characteristics of the rotary cup atomizer used as afterburning installation in exhaust gas boiler Flue [in:] Ivanov V. et al. (eds.), ADSM III (DSMIE 2020), LNME, Springer, Cham 2020, pp. 302-311.
  • [26] Kornienko V., Radchenko R., Mikielewicz D., Pyrysunko M., Andreev A., Improvement of characteristics of water-fuel rotary cup atomizer in a boiler [in:] Tonkonogyi V. et al. (eds.), AMPII, InterPartner-2020, LNME, Springer, Cham 2021, pp. 664-674.
  • [27] Kornienko V., Radchenko R., Stachel A., Andreev A., Pyrysunko M., Correlations for pollution on condensing surfaces of exhaust gas boilers with water-fuel emulsion combustion [in:] Tonkonogyi V. et al. (eds.), AMP, InterPartner-2019, LNME, Springer, Cham 2020, pp. 530-539.
  • [28] Kornienko V., Radchenko R., Bohdal Ł., Kukiełka L., Legutko S., Investigation of condensing heating surfaces with reduced corrosion of boilers with water-fuel emulsion combustion [in:] Nechyporuk M. et al. (eds.), ICTM 2020, LNNS, Springer, Vol. 188, Cham 2021, pp. 300-309.
  • [29] Kornienko V., Radchenko M., Radchenko R., Bohdal Ł., Andreev A., Thermal characteristics of the wet pollution layer on condensing heating surfaces of exhaust gas boilers [in:] Ivanov V., et al. (eds.), ADSM IV (DSMIE 2021), LNME, Springer, Cham 2021, pp. 339-348.
  • [30] Konovalov D., Trushliakov E., Radchenko M., Kobalava G., Maksymov V., Research of the aerothermopresor cooling system of charge air of a marine internal combustion engine under variable climatic conditions of operation [in:] Tonkonogyi V. et al. (eds.), ICAMP, InterPartner-2019, LNME, Springer, Cham 2020, pp. 520-529.
  • [31] Konovalov D., Kobalava H., Radchenko M., Scurtu I.C., Radchenko R., Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling [in:] TE-RE-RD 2020, E3S Web of Conferences, Vol. 180, No. 0101231, 2020.
  • [32] Kobalava H., Konovalov D., Radchenko R., Forduy S., Maksymov V., Numerical simulation of an aerothermopressor with incomplete evaporation for intercooling of the gas turbine engine [in:] Nechyporuk M., Pavlikov V., Kritskiy D. (eds.), Integrated Computer Technologies in Mechanical Engineering - 2020, ICTM 2020, Lecture Notes in Networks and Systems, Springer, Vol. 188, Cham 2021, pp. 519-530.
  • [33] Butrymowicz D., Gagan J., Śmierciew K., Łukaszuk M., Dudar A., Pawluczuk A., Łapiński A., Kuryłowicz A., Investigations of prototype ejection refrigeration system driven by low grade heat, HTRSE-2018, E3S Web of Conferences 70, 2018, p. 7.
  • [34] Smierciew K., Gagan J., Butrymowicz D., Karwacki J., Experimental investigations of solar driven ejector air-conditioning system, Energy and Buildings, Vol. 80, 2014, pp. 260-267.
  • [35] Trushliakov E., Radchenko M., Bohdal T., Radchenko R., Kantor S., An innovative air conditioning system for changeable heat loads [in:] Tonkonogyi V. et al. (eds.), ICAMP, InterPartner-2019, LNME, Springer, Cham 2020, pp. 616-625.
  • [36] Radchenko N.I., On reducing the size of liquid separators for injector circulation plate freezers, International Journal of Refrigeration, Vol. 8, No. 5, 1985, pp. 267-269.
  • [37] Radchenko A., Andreev A., Konovalov D., Zhang Qiang Z., Zewei L., Analysis of ship main engine intake air cooling by ejector and turbocompressor chillers on equatorial voyages [in:] Nechyporuk M., Pavlikov V., Kritskiy D. (eds.), Integrated Computer Technologies in Mechanical Engineering - 2020, ICTM 2020, Lecture Notes in Networks and Systems, Springer, Vol. 188, Cham 2021, pp. 487-497.
  • [38] Radchenko M., Mikielewicz D., Andreev A., Vanyeyev S., Savenkov O., Efficient ship engine cyclic air cooling by turboexpander chiller for tropical climatic conditions [in:] Nechyporuk M., Pavlikov V., Kritskiy D. (eds.), Integrated Computer Technologies in Mechanical Engineering - 2020, ICTM 2020, Lecture Notes in Networks and Systems, Springer, Vol. 188, Cham 2021, pp. 498-507.
  • [39] Bohdal T., Kuczynski W., Boiling of R404A refrigeration medium under the conditions of periodically generated disturbances, Heat Transf. Eng., Vol. 32, 2011, pp. 359-368.
  • [40] Mikielewicz D., Klugmann M., Wajs J., Flow boiling intensification in minichannels by means of mechanical flow turbulising inserts, International Journal of Thermal Sciences, Vol. 65, 2013, pp. 79-91.
  • [41] Mikielewicz D., Analytical model with nonadiabatic effects for pressure drop and heat transfer during boiling and condensation flows in conventional channels and minichannels, Heat Transfer Engineering, Vol. 37, Issue 13-14, 2016, pp. 1158-1171.
  • [42] Kuczyński W., Charun H., Experimental investigations into the impact of the void fraction on the condensation characteristics of R134a refrigerant in minichannels under conditions of periodic instability, Arch. Thermodyn., Vol. 32, 2011, pp. 21-37, doi:10.2478/v10173.
  • [43] Bohdal T., Sikora M., Widomska K., Radchenko A.M., Investigation of flow structures during HFE-7100 refrigerant condensation, Arch. Thermodyn., Vol. 36, 2015, pp. 25-34, doi:10.1515/aoter-2015-0030.
  • [44] Kuczyski W., Charun H., Bohdal T., Kuczynski W., Influence of hydrodynamic instability on the heat transfer coefficient during condensation of R134a and R404A refrigerants in pipe minichannels, Int. J. Heat Mass Transf., Vol. 55, 2012, pp. 1083-1094, doi:10.1016/j.ijheatmasstransfer.2011.10.002.
  • [45] Dąbrowski P., Klugmann M., Mikielewicz D., Selected studies of flow maldistribution in a minichannel plate heat exchanger, Archives of Thermodynamics, Vol. 38, 2017, pp. 135-148.
  • [46] Kumar R., Singh G., Mikielewicz D., A new approach for the mitigating of Flow Maldistribution in Parallel Microchannel Heat Sink, Journal of Heat Transfer, Vol. 140, 2018, pp. 72401-72410.
  • [47] Kumar R., Singh G., Mikielewicz D., Numerical study on mitigation of flow maldistribution in parallel microchannel heat sink: channels variable width versus variable height approach, Journal of Electronic Packaging, Vol. 141, 2019, pp. 21009-21011.
  • [48] Dąbrowski P., Klugmann M., Mikielewicz D., Channel blockage and flow maldistribution during unsteady flow in a model microchannel plate heat exchanger, Journal of Applied Fluid Mechanics, Vol. 12, 2019, pp. 1023-1035.
  • [49] Radchenko A., Trushliakov E., Kosowski K., Mikielewicz D., Radchenko M., Innovative turbine intake air cooling systems and their rational designing, Energies, Vol. 13, Issue 23, 2020, No. 6201, doi:10.3390/en13236201.
  • [50] Radchenko R., Radchenko N., Tsoy A., Forduy S., Zybarev A., Kalinichenko I., Utilizing the heat of gas module by an absorption lithium-bromide chiller with an ejector booster stage, AIP Conference Proceedings, Vol. 2285, 2020, No. 030084, https://doi.org/10.1063/5.0026788.
  • [51] Radchenko N., Trushliakov E., Radchenko A., Tsoy A., Shchesiuk O., Methods to determine a design cooling capacity of ambient air conditioning systems in climatic conditions of Ukraine and Kazakhstan, AIP Conference Proceedings, Vol. 2285, 2020, No. 030074, https://doi.org/10.1063/5.0026790.
  • [52] Zhu Y., Jin X., Du Z., Fang X., Fan B., Control and energy simulation of variable refrigerant flow air conditioning system combined with outdoor air processing unit, Appl. Therm. Eng., Vol. 64, 2014, pp. 385-395.
  • [53] Zhou Y.P., Wu J.Y., Wang R.Z., Shiochi S., Energy simulation in the variable refrigerant flow air-conditioning system under cooling conditions, Energy Build., Vol. 39, 2007, pp. 212-220.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec528775-269e-4c09-b860-d6eb7bd42dc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.