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Abstract

Real life applications of deep learning (DL) are often limited by the lack of expert labeled
data required to effectively train DL models. Creation of such data usually requires sub-
stantial amount of time for manual categorization, which is costly and is considered to be
one of the major impediments in development of DL methods in many areas. This work
proposes a classification approach which completely removes the need for costly expert
labeled data and utilizes noisy web data created by the users who are not subject matter
experts. The experiments are performed with two well-known Convolutional Neural Net-
work (CNN) architectures: VGG16 and ResNet50 trained on three randomly collected
Instagram-based sets of images from three distinct domains: metropolitan cities, popu-
lar food and common objects - the last two sets were compiled by the authors and made
freely available to the research community. The dataset containing common objects is
a webly counterpart of PascalVOC2007 set. It is demonstrated that despite significant
amount of label noise in the training data, application of proposed approach paired with
standard training CNN protocol leads to high classification accuracy on representative
data in all three above-mentioned domains. Additionally, two straightforward procedures
of automatic cleaning of the data, before its use in the training process, are proposed.
Apparently, data cleaning does not lead to improvement of results which suggests that the
presence of noise in webly data is actually helpful in learning meaningful and robust class
representations. Manual inspection of a subset of web-based test data shows that labels
assigned to many images are ambiguous even for humans. It is our conclusion that for the
datasets and CNN architectures used in this paper, in case of training with webly data, a
major factor contributing to the final classification accuracy is representativeness of test
data rather than application of data cleaning procedures.
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1 Introduction

In recent years applications of deep learning to
computer vision have moved the field substantially
towards human-level performance. A great exam-
ple of this trend are the results of ILSVRC (Ima-
geNet Large Scale Visual Recognition Challenge)
that plummeted from more than 25% top-5 error in

2010-2011, when shallow methods were used, to
less than 5% in 2015 with the use of deep learn-
ing (DL). For reference, this result is below human
level accuracy error of 5.1% [40]. This advance-
ment was possible mainly due to large publicly
available annotated datasets like ImageNet [40] or
COCO [29]. Creation of such datasets requires sub-
stantial amount of time for manual categorization
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which is costly and is considered to be one of the
greatest impediments in DL models development in
many areas.

DL efficiently tackles a great number of com-
puter vision tasks like image categorization [24, 43,
47, 17], object detection/localization [36, 37, 42],
image segmentation [16, 41, 12], or image caption-
ing [3].

1.1 Main contribution

In this work we experimentally verify the effi-
cacy of an approach to training Convolutional Neu-
ral Network (CNN) classifiers on noisy web images
annotated by the users (presumably their authors)
who, in many cases, do not assign appropriate la-
bels (annotations), as they are not obliged to follow
any particular set of labeling rules. In popular non-
expert domains (such as city or nature landmarks,
food, monuments, cars, etc.) the availability of such
loosely-tagged images in the Internet is abundant.
Hence it is interesting and potentially promising to
verify to which extent relying solely on webly data
in the training process may still lead to high-quality
classifiers. In summary, the main contribution of
this work is threefold:
– Demonstrating the effectiveness of a standard

approach to training a CNN image classifier with
no use of expert labeled data or human expertise
of any kind, based solely on non-expert labeled
data (downloaded from the web users accounts)
with high amount of label noise. The underly-
ing claim is that CNN classifiers despite being
trained on noisy-labeled data may accomplish
meaningful classification accuracy when tested
on class-representative samples.

– Creation of two webly datasets: a food-related
one (InstaFood1M [26]), composed of 1 million
images (10 categories, each with 100 000 sam-
ples) and the other one, depicting common ob-
jects (InstaPascal2M [27]), composed of 2 mil-
lion images (20 categories, each with 100 000
samples). Both datasets were created by down-
loading images from Instagram. The latter
one is a webly counterpart of PascalVOC2007
dataset [10]. Both sets are freely available for
research purposes.

– Experimentally proving the efficacy of proposed
approach in three distinct domains: landmark

photos of metropolitan cities, images of popular
dishes and images presenting common objects.

1.2 Related literature

Despite certain approaches to classification
with scarce availability of expert labeled data, like
One-shot Learning/Few-shot Learning, e.g. [2, 50,
11], synthetic data generation [8, 15, 20, 53, 45],
Transfer Learning [54], or using expert labeled data
to guide the learning process [48, 18], the problem
of training deep neural networks in the case of a
complete lack of expert labeled samples is not a
common research topic.

Our approach relies on the use of large quanti-
ties of data downloaded from the internet. Clearly,
the usage of webly data in DNN training is not a
new concept. For instance, in [32] web data is uti-
lized in the CNN training, though augmented with
a certain category supervision process. Another
class of algorithms called Multiple Instance Learn-
ing [56, 31, 9] relies on weakly-supervised learning,
with labels assigned not to individual images but to
groups of images. Yet another work assumes ex-
istence of some “easy images” (i.e. characteristic
and well-framed images on a light background) [7],
which are used to pre-train the network before noisy
images appear.

Some methods use a mixture of expert-labeled
and noisy samples in the training process, which
is generally the most common scenario of utiliz-
ing web data in classification tasks, e.g. [51, 33,
4, 49, 52, 5]. Another way of web data utiliza-
tion is its application as a means of model pre-
training [30, 46, 21].

Two streams of research explicitly addressing
the presence of noise in the data refer to the outliers
handling by either filtering or label purification [1,
5, 55], and decreasing the outliers impact on the
training process by adjusting the weights [28, 34],
respectively.

The method proposed in this paper differs from
the above-cited accomplishments by taking ran-
domly collected web data as is, with no further
manual modification of any kind. The webly data
is used directly in the training process without em-
ploying auxiliary expert labeled images or specific
training setting.
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The two papers closest to our research are [19,
23] which also use webly data for CNN training.
Our work differs from [19] in that in [19] a robust
linear regression algorithm is trained on top of the
features extracted by a CNN, while our method uses
a fully trainable CNN for both visual feature gener-
ation and classification. In [23] the authors take a
curriculum learning approach and enhance webly
data training by using Google queries, which are
considered to be “easy images” [7].

Our method refers to the idea of Transfer Learn-
ing (TL) [54], which has recently become a com-
mon aspect of the vast majority of deep CNN ap-
plications. TL is often realized with the help of one
of the well-know large CNNs pre-trained on a large
dataset (ImageNet [40] or COCO [29]). Such a pre-
trained deep CNN is used as a starting point for al-
most any image related problem.

In the view of non-expert knowledge approach
proposed in the paper, besides initialization based
on ImageNet, we have also tested CNN training
with random weight initialization to make sure
that the proposed approach is capable of extract-
ing meaningful patterns and does not simply rely on
features developed during ImageNet pre-training.
While both scenarios differ in the speed of learn-
ing (ImageNet based initialization visibly shifts up
the starting accuracy), in terms of ultimate accu-
racy, the advantage of domain-based initializa-
tion compared to learning from scratch is mini-
mal (section 3.7.2 presents the details).

One of the datasets used in our experiments
(Instacities1M [13]) was previously utilized in the
work related to embedding images in text specific
vectors, like Glove or word2vec [14]. In [14]
those embeddings were used to enhance the im-
age retrieval quality. Our research objectives and
proposed solution methods are clearly non over-
lapping with [14]. The other two datasets (In-
staFood1M [26] and InstaPascal2M [27]) were pre-
pared by the authors of the paper and this research
marks their first use.

The remainder of this paper is arranged as fol-
lows. Section 2 presents proposed solution in more
detail. The next Section describes three datasets
used in the experiments, as well as experiment setup
and technical details of the training procedure. Sec-
tion 4 summarizes the results in terms of classifica-
tion accuracy in the context of the quality of the in-

put data labeling and representativeness of test im-
ages. Additional experiments aimed at automatic
cleaning of the data (with no human assistance) are
presented in Section 5. Conclusions and directions
for future work are discussed in the last Section.

2 Proposed approach

Our goal is to develop high accuracy classifiers
trained solely on photo images collected from web
pages of randomly selected Internet users. This type
of data includes relatively high percentage of non-
representative images (e.g. a photo of a city park or
a sand beach) and dubious or erroneous labels (e.g.
a selfie with a cat in an apartment which is labeled
as “New York city”).

On a general note the proposed approach can be
characterized as follows (the details are provided in
Section 3):

– Automated data collection by means of down-
loading images from random web pages based
on respective category hashtags.

– Automated data cleaning with no need of human
expert involvement.

– Using a pre-trained CNN architecture in the
training process on the above noisy web data.

– Accuracy assessment on class-representative
images.

Figure 1. Flowchart of the proposed approach,
with obligatory and optional steps indicated.

The proposed approach is summarized in Fig-
ure 1. Please note that a cleaning procedure listed
in step 2 is optional and apparently, as discussed in
Section 5, its usage does not improve the accuracy.
This observation is one of the main conclusions of
this work - in the case of webly data, the final classi-
fication quality is much more dependent on the rep-
resentativeness of the test dataset than application
of cleaning procedures.
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Figure 2. Logos of the three Instagram-based datasets used in the
experimental evaluation: InstaCities1M [13], InstaFood1M [26] and
InstaPascal2M [27]. The last two sets were compiled by the authors.

Please also note, that although the use of pre-
trained models in step 3) speeds up training, in
terms of accuracy the learning from scratch leads to
only slightly inferior results. Consequently, the use
of networks initialized based on domain knowledge
saves training time but does not increase the ulti-
mate classification accuracy in a meaningful way.
The details are presented in Section 3.7.

2.1 Motivation

The above-described problem setting addresses
real business needs. For instance, many companies
may require automated image categorization (e.g.
automatic tagging of company’s internal images) or
an automated detection of a certain object (e.g. a
safety helmet on construction site, safety gloves for
ironwork or people presence in restricted areas) on
the photos taken, for instance, by the CCTV cam-
era. In many cases a relevant training data (ready
to use) is not available or its availability is seriously
limited.

Traditional shallow methods work with little
data but they do not meet harsh accuracy require-
ments of commercial solutions. Deep learning
methods could meet those expectations but need
more training data which is costly to gather and in
some cases hinders wider adoption of those algo-
rithms in commercial solutions. The approach pro-
posed in the paper relies on using large amounts
of randomly collected web data (photos of required
objects) and despite obvious flaws in this data (am-
biguous or erroneous labels or non-representative
images) alleviates the problem of scarce availability
of human-labeled samples and enables wider adop-
tion of DL methods in certain domains.

3 Experiment setup

This Section presents detailed specification of
three training datasets and two CNN pre-trained ar-
chitectures used in the experiments along with tech-
nical details of the training procedure.

3.1 InstaCities1M set and Clean city-
related test set

InstaCities1M [13] contains 1 million 224x224
colour images taken (presumably) in the following
10 cities: New York, Singapore, Miami, Toronto,
Los Angeles, San Francisco, Melbourne, Sydney,
London and Chicago. The data is divided into
a training set (800000 images), a validation set
(50000 images) and a test set (150000 images).

InstaCities1M was created by downloading im-
ages tagged by a city name from Instagram. As In-
stagram primary reason is private sharing of images
with other platform users, neither the images nor
their descriptions are validated by experts of any
kind.

Figure 3a shows that many of InstaCities1M
images are not representative for any city (e.g. a
tattoo on a hand) and even a human would have
a hard job with correct classification of the ma-
jority of them. A manual inspection of 10 ran-
domly sampled sets, each composed of 8 images,
revealed that, on average, there was only 1 image
per set that was truly class-specific. The remaining
7 presented a common city content which poten-
tially might have been taken in some other cities,
as well. This observation supports the claim about
high level of noise in the dataset. Ambiguous clas-
sification and uncharacteristic images are just one
source of the problems. Additionally, labeling is
sometimes incorrect because people assign a city
name different from the location in which the im-
age was actually taken. Some examples of incor-
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rect labeling are presented in Figure 3b. None of
such dubious or incorrectly-labeled samples were
manually removed from the dataset, as our aim is to
propose and evaluate a fully automated approach to
data collection and CNN training.

(a) Randomly selected images labeled as London.

(b) Examples of images with incorrect or
unjustifiable labels.

Figure 3. InstaCities1M - The majority of
(randomly chosen) images in Figure 3a are clearly

not representative for London. In Figure 3b the images
(from left to right) are assigned to Sydney, Miami,

London and Singapore, resp. while the real classes are
Melbourne (Flinders Street Railway Station image),
undefined (there are no characteristic landmarks that

could be helpful in identifying the location), undefined
(but rather not London) and Sydney (Opera

House image), resp.

In order to develop a test set composed of,
most probably, properly labeled images we have
additionally downloaded images from official In-
stagram accounts of the above-listed cities, ex-
cept for Miami which seems not to have such
an official account1. The following accounts
were used for photo collection: nycgov (398
images), visit singapore (1117), seetorontonow
(1097), losangeles city (1583), onlyinsf (1470),
cityofmelbourne (1641), sydney (2968), london
(8450) and chicago (2725).

100 randomly sampled subsets of these images
(henceforth denoted as Clean Random) were cre-
ated. Furthermore, in order to estimate the accuracy

upper-bound a single set of the easy to predict im-
ages (Clean Selected) was defined in the following
manner. For each class 300 images with the high-
est class probability returned by the trained network
were selected regardless of the prediction correct-
ness. Each of 100 instances of Clean Random as
well as the Clean Selected set included 2700 im-
ages (300 per class). As stated above the underlying
idea was to use this data as an independent test set
composed of representative images.

3.2 InstaFood1M set and Clean food-
related test set

InstaFood1M dataset [26] was prepared by the
authors following the InstaCities1M structure. The
set was created by downloading images from Insta-
gram identified by particular hashtags. It contains
1 million 224x224 colour images from 10 follow-
ing categories: Apple Pie, Burger, Donuts, French
Fries, Hot Dog, Mac & Cheese, Pancake, Pizza,
Spaghetti, and Steak, which constitute the top-10
food in the USA2’3. Analogously to InstaCities1M
the data is divided into a training set (800000 im-
ages), a validation set (50000 images) and a test set
(150000 images).

Additionally, an independent test set with food
images labeled by the experts was created as a sub-
set of food-101 dataset from kaggle.com4, origi-
nally described in [6]. food-101 contains 1000 im-
ages per each of its 101 classes. For the sake of
direct comparison with cities classification exper-
iments, the data was randomly down-sampled in
each category from 1000 to 300 images, comprising
the Clean food-related data set composed of 3000
images.

InstaFood1M suffers from a similar noise prob-
lem as InstaCities1M, albeit to a lesser extent. In
the case of food, there are fewer non-representative
images. Similarly to the previous case we had man-
ually verified the content of 10 randomly sampled
sets, each composed of 8 images, and observed that,
on average, 5 out of 8 images were indeed class-
specific.

1Consequently the experiments were finally performed with the remaining 9 cities.
2https://visual.ly/community/infographic/food/top-10-americas-favorite-foods
3https://food.ndtv.com/food-drinks/10-american-foods-777850
4https://www.kaggle.com/dansbecker/food-101
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(a) Randomly selected images labeled as Apple
Pie.

(b) Examples of dubious food-related images.

Figure 4. InstaFood1M - Some of the images
presented in Figure 4a are clearly not those of apple
pies though may be somehow linked to this category

- e.g. a photo of apples. In Figure 4b the images (from
left to right) are assigned to Apple Pie, Burger, Pancake,

and Spaghetti, resp., although the real/appropriate
classes are disputable. The first picture presents Apple
laptop, the next one is a photo of spaghetti (first plan)

and burger (in the background), the third one is a funny
photo of a dog’s face - in some sense resembling

a pancake, and the last one was taken in a restaurant -
probably with spaghetti on a small plate in the

very bottom of the figure.

Generally, there are two sources of noise as pre-
sented in Figure 4b. The first one is the same as in
the case of InstaCities1M - the label may not repre-
sent the content (e.g. Apple computer under Apple
Pie hashtag). The other problem is more specific
for this dataset as there can be more than one food
category presented in the image (a typical example
is a Burger with French Fries). Regarding the in-
dependent Clean test set compiled from food-101
data, due to its manual labeling and verification,
no incorrectly labeled or irrelevant images are ex-
pected. The issue which may still exist here is the
co-appearance of more than one food category in an
image.

3.3 InstaPascal2M set and Clean object-
related test set

InstaPascal2M dataset [27] was also prepared
by the authors, as a webly counterpart of Pas-
calVOC2007 dataset [10]. The same 20 categories
as in PascalVOC2007 were considered: Aeroplane,

Bicycle, Bird, Boat, Bottle, Bus, Car, Cat, Chair,
Cow, Dining Table, Dog, Horse, Motorbike, Person,
Potted Plant, Sheep, Sofa, Train, TV/Monitor. In to-
tal 2.1 million 224x224 colour images were down-
loaded to comprise InstaPascal2M, further divided
into a training set (1600000 images) a validation set
(400000 images) and a test set (100000 images).
The same sources of noise as in the two above-
described datasets (incorrect labeling and ambigu-
ous content) can be observed in InstaPascal2M, as
depicted in Figure 5.

(a) Randomly selected images labeled as Bus.

(b) Some wrongly-labeled examples of images
from Car, Sofa, Dog and Airplane classes.

Figure 5. InstaPascal2M - 4 out of 8 randomly
selected images presented in Figure 5a actually depict

a bus (3 pictures of real buses and a hand-drawing
of a bus). Arguably another one (3rd, top row) could

have been taken in a bus interior. Some of the remaining
ones do not present a bus, but may possibly be linked to
this category (a bus stop, or an interior of a metro cart -

another means of transportation). In Figure 5b the
images present a cat, a row of chairs, an elephant and

a helicopter. The first two are wrongly classified and the
last two are out of the scope of predefined categories.

As representative object-related (Clean) test
samples, the images from test part of Pas-
calVOC2007 were considered. In order to ad-
just PascalVOC2007 samples, which were origi-
nally meant for multi-label classification two met-
rics were calculated: accuracy on images that had
only one class assigned (1905 samples), referred
to as accuarcy filtered, and accuracy on all Pas-
calVOC2007 test images (4952). In the former
case, which represents a typical multi-class setting,
the accuracy calculation was straightforward. In the
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(b) Some wrongly-labeled examples of images
from Car, Sofa, Dog and Airplane classes.

Figure 5. InstaPascal2M - 4 out of 8 randomly
selected images presented in Figure 5a actually depict

a bus (3 pictures of real buses and a hand-drawing
of a bus). Arguably another one (3rd, top row) could

have been taken in a bus interior. Some of the remaining
ones do not present a bus, but may possibly be linked to
this category (a bus stop, or an interior of a metro cart -

another means of transportation). In Figure 5b the
images present a cat, a row of chairs, an elephant and

a helicopter. The first two are wrongly classified and the
last two are out of the scope of predefined categories.

As representative object-related (Clean) test
samples, the images from test part of Pas-
calVOC2007 were considered. In order to ad-
just PascalVOC2007 samples, which were origi-
nally meant for multi-label classification two met-
rics were calculated: accuracy on images that had
only one class assigned (1905 samples), referred
to as accuarcy filtered, and accuracy on all Pas-
calVOC2007 test images (4952). In the former
case, which represents a typical multi-class setting,
the accuracy calculation was straightforward. In the

TRAINING CNN CLASSIFIERS SOLELY ON . . .

latter case, for each image it was checked whether
the predicted class is on the list of assigned classes.
This measure will be referred to as accuarcy one.

3.4 Pre-trained CNN

Two CNN architectures pre-trained on Ima-
geNet [40] are used as a starting point of the training
procedure: VGG16 [43] and ResNet50 [17] (pre-
sented in Figs. 6 and 7, resp.). Standard VGG16 is
extended by the dropout layers that we have added
(highlighted in orange) to prevent over-fitting. Both
architectures have 10 or 20 output neurons, depend-
ing on the number of classes in the three consid-
ered datasets (not 1000 as in the original versions).
These two popular and quite different CNN archi-
tectures were selected to check generality of the
proposed training approach and its independence of
a particular pre-trained CNN selection.

Figure 6. VGG16 architecture with 10 output
neurons.

Figure 7. ResNet50 architecture with 10 output
neurons.

3.5 Randomly Initialized CNN

For the majority of experiments we have used
CNNs pre-trained on ImageNet as we would like to
speed up the process and reduce the carbon foot-
print [44] of our experiments. Moreover, it is
the best practice to use knowledge already avail-
able and build up on it. Nevertheless, we also
wanted to demonstrate that high accuracy of the
networks truly depends on the information avail-
able in the webly data and not on the features de-
rived from ImageNet that were already available
as a starting point. To this end, additional experi-
ments with all three webly sets with randomly ini-
tialized ResNet50 network were conducted. For
random initialization the weights were initialized

as in [17] (i.e. sampled from Gaussian distribution
with zero mean and standard deviation depending
on the number of layers in the network) and the
training was performed from scratch. The use of
ResNet50 was motivated by its slightly higher per-
formance and simpler training procedure.

3.6 System parameterization

Initially four sets of experiments were run,
each involving one of the two smaller training sets
(InstaCities1M and InstaFood1M) and one of the
two CNN architectures (VGG16 and ResNet50).
VGG16 was extended by regularization in a form
of a dropout after each fully connected layer.
ResNet50 was used with no modifications, except
for adjusting the size of the output layer (which
concerned both architectures). Except for the
above mentioned modifications both VGG16 and
ResNet50 followed the original implementations
described in [43] and [17], respectively.

Depending on the dataset and CNN architec-
ture the learning process encompassed between 1
and 4 steps, each of them composed of 8 epochs
(full training passes). Each epoch was further di-
vided into 4 iterations for the reasons of error re-
porting (4 times per epoch). In the case of VGG16,
the learning rate was set to 1E − 4 in the first step
and decreased by the factor of 10 at the beginning
of each subsequent step. Furthermore, training in
the first two steps was limited to the last 3 layers
only, with the remaining part being frozen. In sub-
sequent steps the whole network was trained (albeit
with lower starting learning rates). This strategy (in
the case of VGG16) proved to yield better accuracy
than training all weights from the beginning. In the
case of ResNet50, the whole network was trained
right from the start with the initial learning rate
equal to 1E −5. For both networks, when the accu-
racy started to plateau learning rate was decreased
by a factor of 10. A 50000-image validation set
was used to prevent over-fitting. The batch size was
equal to 64 images. In all experiments Adam opti-
mizer [22, 39] was used.

Figure 8 presents example learning curves for
both datasets. In the case of VGG16 a 4-step train-
ing process was performed. All layers were un-
frozen after the second step, which caused a spike
in both training and validation accuracy curves af-
ter iteration 64 for both datasets. In the case of
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ResNet50 one-step training was sufficient and all
weights were trained right from the beginning.

(a) VGG16 - InstaCities1M

(b) ResNet50 - InstaCities1M

(c) VGG16 - InstaFood1M

(d) ResNet50 - InstaFood1M

Figure 8. Training (blue line) and validation (red
line) accuracy curves for both datasets.

3.7 Training and testing protocols

3.7.1 Main experiments

For both InstaCities1M and InstaFood1M sets
the experiments were performed as follows5. First,
30000 images from each set were randomly se-
lected and set aside to be used as a noisy (Webly)
test set. After that both architectures were trained

on the remaining 770000 images with the accu-
racy monitored based on 50000 validation images
to prevent over-fitting. Each of the 4 experiments
was conducted 3 times.

Additionally, two other data sets (one per each
problem domain), described in Sections 3.1 and 3.2,
respectively were used as Clean test sets, presum-
ably without noise.

In the case of InstaPascal2M the experiments
were performed on both noisy Instagram images
and the representative ones. As noisy images
100 000 Instagram test samples left aside at the be-
ginning of the experiment were used. These ob-
servations were divided into 10 disjoint sets so as
to resemble the testing settings of the experiments
with the two other datasets (InstaCities1M and In-
staFood1M). As a class representative Clean set
the test part of PascalVOC2007, described in Sec-
tion 3.3, was used.

The main experimental hypothesis was that
a classifier trained on (very) noisy Internet data
could still provide high quality predictions on
representative data.

3.7.2 Additional experiments

Additional experiments conducted on all three
webly data sets aimed at verifying the importance of
ImageNet initialization in the training process. Fur-
thermore, we tested whether using higher volumes
of webly data would lead to performance increase.
The experiments were limited to ResNet50 archi-
tecture as it offered slightly higher accuracy with
simpler training procedure. For each webly data
set the following 4 experiments were performed.
First, the ResNet50 network with random initializa-
tion was trained based on half of the training and
validation data. Then, analogous training was per-
formed with the same network initialized on Ima-
geNet. Both experiments will be referred to as small
webly. Afterwards, the same experiments were re-
peated using the entire webly data for training / val-
idation subsets - referred to as big webly experi-
ments (the proposed approach is visualized for a
sample class in Figure 9). In both small webly and
big webly runs the whole Webly test set (composed
of 30 000 samples for InstaFood1M and InstaCi-
ties1M, and 100 000 samples for InstaPascal2M)

5The source code for all experiments is available at https://github.com/SzefKuchni/Insta codes
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ResNet50 one-step training was sufficient and all
weights were trained right from the beginning.

(a) VGG16 - InstaCities1M

(b) ResNet50 - InstaCities1M

(c) VGG16 - InstaFood1M

(d) ResNet50 - InstaFood1M

Figure 8. Training (blue line) and validation (red
line) accuracy curves for both datasets.

3.7 Training and testing protocols

3.7.1 Main experiments

For both InstaCities1M and InstaFood1M sets
the experiments were performed as follows5. First,
30000 images from each set were randomly se-
lected and set aside to be used as a noisy (Webly)
test set. After that both architectures were trained

on the remaining 770000 images with the accu-
racy monitored based on 50000 validation images
to prevent over-fitting. Each of the 4 experiments
was conducted 3 times.

Additionally, two other data sets (one per each
problem domain), described in Sections 3.1 and 3.2,
respectively were used as Clean test sets, presum-
ably without noise.

In the case of InstaPascal2M the experiments
were performed on both noisy Instagram images
and the representative ones. As noisy images
100 000 Instagram test samples left aside at the be-
ginning of the experiment were used. These ob-
servations were divided into 10 disjoint sets so as
to resemble the testing settings of the experiments
with the two other datasets (InstaCities1M and In-
staFood1M). As a class representative Clean set
the test part of PascalVOC2007, described in Sec-
tion 3.3, was used.

The main experimental hypothesis was that
a classifier trained on (very) noisy Internet data
could still provide high quality predictions on
representative data.

3.7.2 Additional experiments

Additional experiments conducted on all three
webly data sets aimed at verifying the importance of
ImageNet initialization in the training process. Fur-
thermore, we tested whether using higher volumes
of webly data would lead to performance increase.
The experiments were limited to ResNet50 archi-
tecture as it offered slightly higher accuracy with
simpler training procedure. For each webly data
set the following 4 experiments were performed.
First, the ResNet50 network with random initializa-
tion was trained based on half of the training and
validation data. Then, analogous training was per-
formed with the same network initialized on Ima-
geNet. Both experiments will be referred to as small
webly. Afterwards, the same experiments were re-
peated using the entire webly data for training / val-
idation subsets - referred to as big webly experi-
ments (the proposed approach is visualized for a
sample class in Figure 9). In both small webly and
big webly runs the whole Webly test set (composed
of 30 000 samples for InstaFood1M and InstaCi-
ties1M, and 100 000 samples for InstaPascal2M)

5The source code for all experiments is available at https://github.com/SzefKuchni/Insta codes
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was used to check the accuracy of the trained mod-
els. Each of the 4 experiments was repeated 3 times.

Figure 9. The figure illustrates the baseline idea
of the proposed approach. In the upper part,

two types of datasets for “apple pie” category are
visualized: webly data that contains some erroneous
images (due to noise) and clean dataset that contains

only class-representative images. In the lower part, the
concept of the experiments is visually explained by
means of indicating the dataset types and their sizes.

4 Experimental results

4.1 Training on webly data

On InstaFood1M the results achieved with
VGG16 and ResNet50 are close to each other, as
presented in Table 1. For both architectures test ac-
curacy on user Instagram images (denoted as Webly
in the table) is lower than on manually labeled data
from kaggle.com (denoted as Clean). Test results
on Clean data are repeatable and of high accuracy
(up to 89.1% on average), exceeding Webly test re-
sults by up to 24.5 p.p. Lowering the amount of
training data (small webly experiments) causes only
slight accuracy drop on both Clean and Webly test
sets. Similar trends can be observed for InstaCi-
ties1M (Table 2) where tests on Clean set collected
from official Instagram cities accounts yield higher
accuracy than tests on Webly data from Instagram
user accounts, albeit the accuracy is generally lower
compared to food data. For randomly selected im-
ages from the Clean test set (Clean Random in Ta-
ble 2), depending on the architecture, the accuracy
is up to 14.1 p.p. higher than for noisy images (We-
bly). The difference raises significantly (up to 50.5
p.p.) for the selected easy to predict data (Clean
Selected, defined in Section 3.7.1). In the case of

InstaCities1M the impact of training set size is the
highest among the three sets as reducing the amount
of training data by 50% (small webly) caused an ac-
curacy drop of 5.7 p.p. for Clean Random and 7
p.p. for Clean Selected, respectively.

The results for InstaPascal2M are presented in
Table 3. The mean accuracy on Clean dataset (Pas-
calVOC2007) when the whole training data was
used (big webly) reached 83.8% and 80.5% for
acc f iltered and acc one measures, respectively.
The results for Webly test data were on average 31.9
p.p. worse. Reducing the training data (small we-
bly) caused a relatively minor accuracy deteriora-
tion (between 2.1 and 3.3 p.p.).

4.2 Training on clean data

For the sake of establishing the reference point
we performed experiments aimed at verifying the
level of accuracy which can be achieved using ex-
clusively clean (class representative) training data.

In food-101 set, the same 3000 images (which
composed the Clean test dataset) were used for test-
ing and the remaining 7000 for training (6000)
and validation (1000), resp. In the case of Pas-
calVOC2007, we followed the standard data split
suggested by the authors of this set, i.e. for training
and validation we used 5011 images and for test-
ing 4952 images. In the case of cities-related data,
despite efforts, we could not reach any meaningful
results, due to small number of samples (2700) and
their relatively lower specificity.

The results of training with clean data did not
match the accuracy achieved with webly data train-
ing in none of the two domains in which we had
enough clean data available. For food-related data
the accuracy presented in Table 1 (clean) is on av-
erage a few percent worse than using big webly
training data. The same observation is valid in
common objects related data, presented in Table 3,
where clean training leads to worse performance
than training on big webly data for both measures
described.

4.3 Training with/without pre-training

Learning curves aggregating results of 4 exper-
iments, each with 3 runs, with webly training data
sets are presented in Figure 10. It can be seen in the
figures that indeed providing more data increases
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Table 1. InstaFood1M. Accuracy results on Webly and Clean test sets described in Section 3.7.1. big webly and
small webly refer to utilization of the entire training set and half of this set, resp. (cf. Section 3.7.2). clean training

data refers to class representative images coming from food-101 dataset (cf. Section 4.2). For Webly data the results
of a single experiment are reported with standard deviation hence this data was divided into ten equal-size parts. For

Clean data only one value per experiment is available since this dataset was used as a whole.
Each experiment was repeated 3 times with ImageNet initialization.

Data Accuracy [%]
Train Test Architecture Exp.1 Exp.2 Exp.3 Mean
big webly Webly ResNet50 64.6 (+/-0.84) 64.8 (+/-0.77) 64.4 (+/-0.89) 64.6 (+/-0.83)

Clean ResNet50 88.5 89.4 89.4 89.1 (+/-0.53)
Webly VGG16 61.0 (+/-0.77) 61.0 (+/-0.54) 60.9 (+/-0.56) 61.0 (+/-0.62)
Clean VGG16 86.5 87.0 87.1 86.9 (+/-0.25)

small webly Webly ResNet50 62.1 (+/-0.77) 62.0 (+/-0.74) 61.9 (+/-0.72) 62.0 (+/-0.74)
Clean ResNet50 87.9 88.0 87.4 87.8 (+/-0.32)

clean Clean VGG16 79.0 79.7 77.8 78.9 (+/-0.79)
Clean ResNet50 83.5 83.6 82.9 83.3 (+/-0.28)

Table 2. InstaCities1M. Accuracy results for Webly test set and two variants of Clean test sets (Random and
Selected) described in Section 3.7.1. big webly and small webly refer to utilization of the entire training set and half

of this set, resp. (cf. Section 3.7.2). For Webly and Clean Random data the results are reported with standard
deviation since these datasets were created by means of division of a larger data set into disjoint parts (Webly) or by

sampling from a larger data set (Clean Random). For Clean Selected only one value per experiment is available since
this data set is composed of 300 easy to predict images from each class from the Clean test data.

Each experiment was repeated 3 times with ImageNet initialization.

Data Accuracy [%]
Train Test Architecture Exp.1 Exp.2 Exp.3 Mean
big webly Webly ResNet50 32.3 (+/-0.90) 31.8 (+/-0.86) 32.0 (+/-0.81) 32.0 (+/-0.86)

Clean Random ResNet50 46.9 (+/-2.37) 45.1 (+/-2.37) 46.3 (+/-2.44) 46.1 (+/-2.39)
Clean Selected ResNet50 83.5 80.7 83.4 82.5 (+/-1.62)
Webly VGG16 30.3 (+/-0.75) 30.0 (+/-0.67) 30.1 (+/-0.84) 30.1 (+/-0.76)
Clean Random VGG16 41.9 (+/-2.43) 41.3 (+/-2.49) 42.7 (+/-2.45) 42.0 (+/-2.46)
Clean Selected VGG16 71.0 68.9 69.8 69.9 (+/-0.89)

small webly Webly ResNet50 29.1 (+/-0.82) 28.8 (+/-0.56) 28.9 (+/-0.78) 28.9 (+/-0.72)
Clean Random ResNet50 40.3 (+/-2.34) 40.4 (+/-2.34) 40.5 (+/-2.38) 40.4 (+/-2.35)
Clean Selected ResNet50 75.3 76.3 74.9 75.5 (+/-0.75)

Figure 10. Validation curves for experiments with random and ImageNet initialization on small webly and
big webly data sets. Each curve is an average of 3 experiments.

(a) InstaFood1M (b) InstaCities1M (c) InstaPascal2M
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Table 1. InstaFood1M. Accuracy results on Webly and Clean test sets described in Section 3.7.1. big webly and
small webly refer to utilization of the entire training set and half of this set, resp. (cf. Section 3.7.2). clean training

data refers to class representative images coming from food-101 dataset (cf. Section 4.2). For Webly data the results
of a single experiment are reported with standard deviation hence this data was divided into ten equal-size parts. For

Clean data only one value per experiment is available since this dataset was used as a whole.
Each experiment was repeated 3 times with ImageNet initialization.

Data Accuracy [%]
Train Test Architecture Exp.1 Exp.2 Exp.3 Mean
big webly Webly ResNet50 64.6 (+/-0.84) 64.8 (+/-0.77) 64.4 (+/-0.89) 64.6 (+/-0.83)

Clean ResNet50 88.5 89.4 89.4 89.1 (+/-0.53)
Webly VGG16 61.0 (+/-0.77) 61.0 (+/-0.54) 60.9 (+/-0.56) 61.0 (+/-0.62)
Clean VGG16 86.5 87.0 87.1 86.9 (+/-0.25)

small webly Webly ResNet50 62.1 (+/-0.77) 62.0 (+/-0.74) 61.9 (+/-0.72) 62.0 (+/-0.74)
Clean ResNet50 87.9 88.0 87.4 87.8 (+/-0.32)

clean Clean VGG16 79.0 79.7 77.8 78.9 (+/-0.79)
Clean ResNet50 83.5 83.6 82.9 83.3 (+/-0.28)

Table 2. InstaCities1M. Accuracy results for Webly test set and two variants of Clean test sets (Random and
Selected) described in Section 3.7.1. big webly and small webly refer to utilization of the entire training set and half

of this set, resp. (cf. Section 3.7.2). For Webly and Clean Random data the results are reported with standard
deviation since these datasets were created by means of division of a larger data set into disjoint parts (Webly) or by

sampling from a larger data set (Clean Random). For Clean Selected only one value per experiment is available since
this data set is composed of 300 easy to predict images from each class from the Clean test data.

Each experiment was repeated 3 times with ImageNet initialization.

Data Accuracy [%]
Train Test Architecture Exp.1 Exp.2 Exp.3 Mean
big webly Webly ResNet50 32.3 (+/-0.90) 31.8 (+/-0.86) 32.0 (+/-0.81) 32.0 (+/-0.86)

Clean Random ResNet50 46.9 (+/-2.37) 45.1 (+/-2.37) 46.3 (+/-2.44) 46.1 (+/-2.39)
Clean Selected ResNet50 83.5 80.7 83.4 82.5 (+/-1.62)
Webly VGG16 30.3 (+/-0.75) 30.0 (+/-0.67) 30.1 (+/-0.84) 30.1 (+/-0.76)
Clean Random VGG16 41.9 (+/-2.43) 41.3 (+/-2.49) 42.7 (+/-2.45) 42.0 (+/-2.46)
Clean Selected VGG16 71.0 68.9 69.8 69.9 (+/-0.89)

small webly Webly ResNet50 29.1 (+/-0.82) 28.8 (+/-0.56) 28.9 (+/-0.78) 28.9 (+/-0.72)
Clean Random ResNet50 40.3 (+/-2.34) 40.4 (+/-2.34) 40.5 (+/-2.38) 40.4 (+/-2.35)
Clean Selected ResNet50 75.3 76.3 74.9 75.5 (+/-0.75)

Figure 10. Validation curves for experiments with random and ImageNet initialization on small webly and
big webly data sets. Each curve is an average of 3 experiments.
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Table 3. InstaPascal2M. Accuracy results for Webly and Clean test sets described in Section 3.7.1. The results are
presented in the perspective of three types of training data: small webly - using half of the training and validation

data, big webly - using all this data and clean coming from PascalVOC2007. For Webly test data individual results are
reported with standard deviation since this data was divided into ten equal-size parts. For Clean data only one value

per experiment is available since this dataset was used as a whole. Each experiment
was repeated 3 times with ImageNet initialization.

Data Accuracy [%]
Train Test Measure Exp.1 Exp.2 Exp.3 Mean
big webly Webly acc filtered 51.9 (+/-1.09) 52.1 (+/-0.95) 51.9 (+/-0.96) 51.9 (+/-1.00)

acc one 52.1 (+/-0.77) 52.3 (+/-0.62) 52.1 (+/-0.62) 52.2 (+/-0.67)
small webly Webly acc filtered 49.3 (+/-0.91) 50.2 (+/-0.82) 49.4 (+/-0.78) 49.6 (+/-0.84)

acc one 49.5 (+/-0.61) 50.5 (+/-0.70) 49.6 (+/-0.51) 49.9 (+/-0.61)
big webly Clean acc filtered 82.7 84.7 84.1 83.8 (+/-1.03)

acc one 79.9 80.7 80.9 80.5 (+/-0.54)
small webly Clean acc filtered 80.4 82.1 80.0 80.5 (+/-1.11)

acc one 77.9 80.0 77.2 78.4 (+/-1.46)
clean Clean acc filtered 58.0 63.9 59.0 60.3 (+/-3.21)

acc one 66.3 69.0 68.1 67.8 (+/-1.34)

accuracy although the gain is moderate (2− 5 p.p.,
depending on the data set) compared to the increase
in the amount of data (which was doubled). It can
also be observed in Figures 10a, 10b and 10c that
learning curves of the networks initialized with Im-
ageNet data end up stabilizing on a similar level to
those initialized randomly with only up to 5% dif-
ference in the accuracy at the later epochs. The
main difference, which is not surprising in fact, is
the clearly longer ’warm-up’ phase in randomly ini-
tiated experiments.

In summary, the learning curves confirm that
the same conclusions related to the efficacy of
webly data training can be drawn irrespective of
the weight initialization scheme (pre-training on
ImageNet or random initialization).

4.4 Error analysis

In food classification the most common errors
were caused either by simultaneous appearance of
two or more products in the image or by products
similarity that confused the system. The most com-
monly co-appearing class were French Fries and
the most frequent classes co-occurrence was that of
Burger and French Fries.

Cities classification is clearly a harder task,
mainly because, unlike food, cities have very much
in common e.g. rivers, skyscrapers, buildings,
roads, parks, etc. and therefore many city photos
are not truly representative for the location in which
they have been taken. The most frequent misclassi-

fications were predictions of New York (true class:
Chicago, London) and Miami (true class: Sydney,
London, Chicago).

In the case of common objects classification a
frequent mistake was prediction of various classes
instead of a person. Additionally, quite common
was confusing the classes that appear in similar sur-
roundings, specifically mistaking a dog with a cat,
a dog with a sheep or a chair with a sofa.

4.5 Potential limitations of the method ap-
plicability

The underlying assumption of proposed ap-
proach is availability of massive image-based train-
ing data in a given domain of interest. This is proba-
bly the main source of potential applicability limita-
tions, in particular in the expert areas or less popular
domains.

The other limitation, which is also domain-
dependent, is frequent co-occurrence of two or
more classes. Such a situation may affect fi-
nal model accuracy. In our experiments with In-
staFood1M significant part of errors were caused
by simultaneous appearance of two or more prod-
ucts in the image. Figure 11 presents exam-
ple images containing both Burger and French
Fries classes, accompanied by Locally Interpretable
Model-agnostic Explanations (LIME) [38] analysis
(which points areas supporting prediction of a par-
ticular class in a given image, as well as those which
undermine this prediction). All four images were
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incorrectly classified and from the LIME analysis
it stems that there are significant clusters of pixels
supporting each of the two classes.

Figure 11. LIME analysis [38] of examples of the
most frequently co-occurring classes: Burger and
French Fries. Green color represents areas which
support prediction of a given class and red color

represents areas that undermine this prediction. In the
upper row the analysis is presented from the perspective

of Burger (true class) and in the lower one form the
perspective of French Fries (wrong class).

Considering potential risks associated with
practical utilization of the method, a situation which
should generally be treated with special care is un-
even importance of particular classes. Proposed
method treats all errors with the same degree of rel-
evance which may not necessarily be the case in
practice (e.g. in medicine where false positive di-
agnosis is usually less harmful than false negative
one). A possible remedy would be redefinition of
the loss function used during training so as to reflect
the true relevance of particular classes or particular
misclassifications. Another risk which may mate-
rialize in practice is uneven support for the classes
in the training set. A situation when some classes
are represented by much smaller numbers of train-
ing examples than other classes may skew the sys-
tem performance towards classes with more abun-
dant representations. Again, the advise would be to
accommodate the effects of nonuniform class dis-
tribution in the loss function or to apply data aug-
mentation process [25] to images belonging to un-
derrepresented classes.

5 Data cleaning

In the quest for further enhancement of re-
sults we proposed two straightforward procedures
for data cleaning. In both of them, the dataset

(either InstaFood1M, InstaCities1M or InstaPas-
cal2M) was randomly divided into N disjoint parts
(P1, . . . ,PN) of the same size. Subsequently, N sep-
arate copies of ResNet50 network, henceforth de-
noted by RN1, . . . ,RNN , with the same architecture
and using the same learning procedure as in the
main experiments, were trained - each on one of the
subsets P1, . . . ,PN , resp. Afterwards, each RNi, i =
1, . . . ,N made predictions on the samples belong-
ing to P\Pi where P := ∪k=1,...,NPk. This way each
image was classified N − 1 times (by N − 1 net-
works, trained independently). The following two
data cleaning strategies were proposed and tested:

– Correction - changing the label of an image
when all N − 1 networks agreed on the same
class which was different from the original one.

– Removal - removing an image from the training
set when each of N−1 networks output a differ-
ent class.

Both strategies aimed at removing the noise from
the training data, either by correcting dubious la-
bels or by deleting images that were presumably not
representative for any class.

In all data cleaning experiments N = 5 was
used, as a reasonable compromise between results
credibility (the number of concurrent predictions)
and relevance of the training subsets (their reason-
able sizes).

Each experiment was performed according to
the following scenario: (1) random division of
dataset P into Pi, i = 1, . . . ,5, (2) training RNi, i =
1, . . . ,5 based on Pi, (3) testing trained RNi on P \
Pi, i = 1, . . . ,5, (4) labels correction or removal (de-
pending on the considered cleaning variant) leading
to a cleaner dataset P′, (5) training ResNet50 on
P′ and its testing according to the main experiment
scheme.

A summary of data cleaning experiments is pre-
sented in Table 4. The level of correction is com-
parable among all three datasets in terms of the per-
centage of corrected observations. Examples of cor-
rected samples, presented in Figures 12, 14 and 16,
respectively, show that the newly assigned labels
are generally well chosen.

The number of removed samples with respect
to the dataset size varies much more than in the
correction experiments. InstaCities1M has poten-
tially the most ambiguous labels (many city images
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incorrectly classified and from the LIME analysis
it stems that there are significant clusters of pixels
supporting each of the two classes.

Figure 11. LIME analysis [38] of examples of the
most frequently co-occurring classes: Burger and
French Fries. Green color represents areas which
support prediction of a given class and red color

represents areas that undermine this prediction. In the
upper row the analysis is presented from the perspective

of Burger (true class) and in the lower one form the
perspective of French Fries (wrong class).

Considering potential risks associated with
practical utilization of the method, a situation which
should generally be treated with special care is un-
even importance of particular classes. Proposed
method treats all errors with the same degree of rel-
evance which may not necessarily be the case in
practice (e.g. in medicine where false positive di-
agnosis is usually less harmful than false negative
one). A possible remedy would be redefinition of
the loss function used during training so as to reflect
the true relevance of particular classes or particular
misclassifications. Another risk which may mate-
rialize in practice is uneven support for the classes
in the training set. A situation when some classes
are represented by much smaller numbers of train-
ing examples than other classes may skew the sys-
tem performance towards classes with more abun-
dant representations. Again, the advise would be to
accommodate the effects of nonuniform class dis-
tribution in the loss function or to apply data aug-
mentation process [25] to images belonging to un-
derrepresented classes.

5 Data cleaning

In the quest for further enhancement of re-
sults we proposed two straightforward procedures
for data cleaning. In both of them, the dataset

(either InstaFood1M, InstaCities1M or InstaPas-
cal2M) was randomly divided into N disjoint parts
(P1, . . . ,PN) of the same size. Subsequently, N sep-
arate copies of ResNet50 network, henceforth de-
noted by RN1, . . . ,RNN , with the same architecture
and using the same learning procedure as in the
main experiments, were trained - each on one of the
subsets P1, . . . ,PN , resp. Afterwards, each RNi, i =
1, . . . ,N made predictions on the samples belong-
ing to P\Pi where P := ∪k=1,...,NPk. This way each
image was classified N − 1 times (by N − 1 net-
works, trained independently). The following two
data cleaning strategies were proposed and tested:

– Correction - changing the label of an image
when all N − 1 networks agreed on the same
class which was different from the original one.

– Removal - removing an image from the training
set when each of N−1 networks output a differ-
ent class.

Both strategies aimed at removing the noise from
the training data, either by correcting dubious la-
bels or by deleting images that were presumably not
representative for any class.

In all data cleaning experiments N = 5 was
used, as a reasonable compromise between results
credibility (the number of concurrent predictions)
and relevance of the training subsets (their reason-
able sizes).

Each experiment was performed according to
the following scenario: (1) random division of
dataset P into Pi, i = 1, . . . ,5, (2) training RNi, i =
1, . . . ,5 based on Pi, (3) testing trained RNi on P \
Pi, i = 1, . . . ,5, (4) labels correction or removal (de-
pending on the considered cleaning variant) leading
to a cleaner dataset P′, (5) training ResNet50 on
P′ and its testing according to the main experiment
scheme.

A summary of data cleaning experiments is pre-
sented in Table 4. The level of correction is com-
parable among all three datasets in terms of the per-
centage of corrected observations. Examples of cor-
rected samples, presented in Figures 12, 14 and 16,
respectively, show that the newly assigned labels
are generally well chosen.

The number of removed samples with respect
to the dataset size varies much more than in the
correction experiments. InstaCities1M has poten-
tially the most ambiguous labels (many city images
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can be non-representative for a particular city) and
InstaPascal2M classes are the most distinct from
one another. Examples of removed samples (due
to complete disagreement among networks) are de-
picted in Figures 13, 15 and 17, respectively. The
vast majority of these samples are not representa-
tive for any of the classes in the respective datasets
and are clearly good candidates for a deletion.

Table 4. Summary of changes introduced to original
datasets in effect of application of data cleaning

procedures. Rows labeled Original, Correction and
Removal indicate the initial size of the training datasets,
the number of samples with modified (corrected) labels
and the number of removed observations, resp. Values

in parentheses show the number of observations
changed/removed as a percentage

of the original dataset.

Dataset InstaFood1M InstaCities1M InstaPascal2M
Original 800 000 800 000 1 600 000
Correction 42 502

(5.3%)
44 392
(5.5%)

98 091
(6.1%)

Removal 82 096
(10.3%)

126 560
(15.8%)

90 430
(5.7%)

Figure 12. InstaFood1M examples for which all
four RN networks agreed on the same new class

(initial → corrected).

Figure 13. InstaFood1M examples (with initial
class) for which all four RN networks predicted

different classes.

Figure 14. InstaCities1M examples for which all
four RN networks agreed on the same new class

(initial → corrected).

Figure 15. InstaCities1M examples (with initial
class) for which all four RN networks predicted

different classes.

Figure 16. InstaPascal2M examples for which all
four RN networks agreed on the same new class

(initial → corrected).

Figure 17. InstaPascal2M examples (with initial
class) for which all four RN networks predicted

different classes.
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Quite surprisingly, the data cleaning procedures
did not bring accuracy improvement over the base
results (without cleaning). This outcome suggests
that noisy images, when considered in a sufficiently
large number, carry certain background information
which is indeed relevant for the ultimate classifica-
tion accuracy.

6 Conclusions

The paper demonstrates that it is possible to
efficiently train two CNN classifiers from com-
pletely different families (VGG and ResNet) on
noisy web data. For the best model, the average
accuracy results on representative test data reached
89.1% on InstaFood1M and 82.5% on more de-
manding Instacities1M dataset. In the case of In-
staPascal2M the results on representative test data
attained (on average) 83.8% and 80.5% according
to accuracy f iltered and accuracy one measures,
resp. The above scores are repeatable with very low
standard deviation which supports the claim about
robustness of proposed training approach.

Overall, the results confirm the possibility to
use abundant weakly-labeled Internet resources of
images as a source of data in the training process,
with no need for manual data inspection, data clean-
ing or other enhancement.

The experiments showed that the resulting ac-
curacy of webly-trained CNN classifiers is indepen-
dent of the initialization method. A direct com-
parison of randomly initialized architectures vs.
the same architectures initialized on ImageNet data
confirmed that webly data contains all the infor-
mation required to train the models effectively, al-
though using a good starting point (initialization of
weights based on ImageNet) speeds up the training
process significantly.

An auxiliary data cleaning process did not cause
accuracy improvement which suggests that class
representations learnt from webly data are indeed
meaningful and robust. In particular, excluding
huge chunks of “the noisiest” data in the Removal
experiments (with no consequent performance im-
provement) suggest that it is not a matter of the
amount of noise in the webly training data but rather
the quality of the test data that contributes mostly to
the overall classification results.

Extended experiments with food-related and
object-related images confirmed that training solely
on class-representative data (i.e. well-framed and
unambiguous images) may not be competitive to
training with noisy webly data, unless the clean
training dataset is sufficiently large. Consequently,
the proposed training regime may offer a viable
alternative in domains with scarce availability of
expert-labeled data.

The approach presented in this paper is rudi-
mentary, and does not require any expert-labeled
data. We believe that future research on webly data
utilization should follow the same path, but with a
focus on a more effective usage of the information
represented in webly data. In this context, inter-
esting areas of research are methods that can either
learn more effectively under the presence of noise,
methods capable of selecting most useful images
from webly data, and self-supervised methods (e.g.
CLIP model [35]).
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