PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tracking the development of seismic fracture network from The Geysers geothermal field

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Underground fluid injections result in rock mass fracturing. The associated environmental hazards in a significant part stem from a possibility for linking these fractures. The resultant crevices may allow for an undesired and hazardous fluid migration. We studied the fracture linking problem on data from a part of The Geysers geothermal field in California, USA. We parameterized seismic events by the distance between hypocenter and injecting well, by the angle between the position vector of hypocentre and the maximum horizontal stress direction and by the angle of rotation required to turn the event’s doublecouple mechanism into the prevailing in this area faults’ orientation. To make these parameters comparable, we transformed them to equivalent dimensions. Based on distances between events in the transformed parameter space, we divided the seismic events into clusters. The percentage of potentially linked fractures in clusters was greater at low than at high injection rate.
Czasopismo
Rocznik
Strony
341--350
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland
  • Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland
  • Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • 1. Albert R, Barabasi AL (2002) Statistical mechanics of complex network. Rev Mod Phys 74:47–97. https://doi.org/10.1103/RevModPhys.74.47
  • 2. Al-Dhamen M, Makmun A, Hilal A (2013) Production optimization with hydraulic fracturing: application of fluid technology to control fracture height growth in deep hard-rock formation. In: IPTC 2013: international petroleum technology conference drilling and completions 26 March 2013, Eage
  • 3. Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25(8–12):861–884. https://doi.org/10.1016/S0309-1708(02)00042-8
  • 4. Bowman A (1984) An alternative method of cross-validation for the smoothing of density estimate. Biometrika 71:353–360. https://doi.org/10.1093/biomet/712353
  • 5. Boyle K, Zoback M (2014) The stress state of the Northwest Geysers, California geothermal field, and implications for fault-controlled fluid flow. Bull Seismol Soc Am 104(5):2303–2312. https://doi.org/10.1785/0120130284
  • 6. Chen J, Al-Wadei MH, Kennedy RCM, Terry PD (2014) Hydraulic fracturing: paving the way for a sustainable future? J Environ Public Health. 2014:656824. https://doi.org/10.1155/2014/656824
  • 7. Chorozoglou D, Kugiumtzis D, Papadimitriou E (2018) Testing the structure of earthquake networks from multivariate time series of successive main shocks in Greece. Physica A. https://doi.org/10.1016/jphysa201801033
  • 8. Cladouhos TT, Petty S, Foulger G, Julian BR, Fehler M (2010) Injection induced seismicity and geothermal energy. Transactions—Geothermal Resources Council 34:1213–1220
  • 9. Cornet F, Berard T, Bourouis S (2007) How close to failure is a granite rock at a 5 km depth? Int J Rock Mech Min Sci 44(1):47–66. https://doi.org/10.1016/jijrmms200604008
  • 10. Cuenot N, Charlety J, Dorbath L, Haessler H (2006) Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forêts, France. Geothermics 35(5):561–575. https://doi.org/10.1016/jgeothermics200611007
  • 11. Davy P, Le Goc R, Darcel C (2013) A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling. J Geophys Res Atmosp 118(4):1393–1407. https://doi.org/10.1002/jgrb50120
  • 12. Hardebeck JL, Michael AJ (2006) Damped regional-scale stress inversions: methodology and examples for southern California and the Coalinga aftershock sequence. J Geophys Res. https://doi.org/10.1029/2005JB004144Google Scholar
  • 13. Hope SM, Davy P, Maillot J, Le Goc R, Hansen A (2015) Topological impact of constrained fracture growth. Front. Phys. 3:75. https://doi.org/10.3389/fphy.2015.00075
  • 14. Jeanne P, Rutqvist J, Hartline C, Garcia J, Dobson PF, Walters M (2014) Reservoir structure and properties from geomechanical modeling and microseismicity analyses associated with an enhanced geothermal system at The Geysers, California. Geothermics 51:460–469. https://doi.org/10.1016/jgeothermics2014020030375-6505/
  • 15. Kagan YY (2007) Simplified algorithms for calculating double-couple rotation. Geophys J Int 171(1):411–418. https://doi.org/10.1111/j1365-246X200703538x
  • 16. Kwiatek G, Martinez-Garzón P, Dresen G, Bohnhoff M, Sone H, Hartline C (2015) Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude at northwestern The Geysers geothermal field. J Geophys Res: Solid Earth. https://doi.org/10.1002/2015JB012362
  • 17. Lasocki S (2014) Transformation to equivalent dimensions—a new methodology to study earthquake clustering. Geophys J Int 197(2):1224–1235. https://doi.org/10.1093/gji/ggu062
  • 18. Leptokaropoulos K, Staszek M, Lasocki S, Martínez-Garzón P, Kwiatek G (2017) Evolution of seismicity in relation to fluid injection in the North-Western part of The Geysers geothermal field. Geophys J Int 212(2):1157–1166. https://doi.org/10.1093/gji/ggx481
  • 19. Lockner D, Summers R, Moore D, Byerlee JD (1982) Laboratory measurements of reservoir rock from the Geysers geothermal field. Calif Int J Rock Mech Min Sci Geomech Abst 19(2):65–80. https://doi.org/10.1016/0148-9062(82)91632-1
  • 20. Majer E, Baria R, Stark M, Oates S, Bommer J, Smith B, Asanuma H (2007) Induced seismicity associated with enhanced geothermal systems. Geothermics 36(3):185–222. https://doi.org/10.1016/jgeothermics200703003
  • 21. Martinez-Garzón P, Bohnhoff M, Kwiatek G, Dresen G (2013) Stress tensor changes related to fluid injection at the geysers geothermal field, California. Geophysical Research Letters 40(11):2596–2601. https://doi.org/10.1002/grl50438
  • 22. Martinez-Garzón P, Kwiatek G, Sone H, Bohnhoff M, Dresen G, Hartline C (2014a) Spatiotemporal changes, faulting regimes and source-parameters of induced seismicity: a case study from The Geysers geothermal field. J Geophys Res: Solid Earth. https://doi.org/10.1002/2014JB011385
  • 23. Martinez-Garzón P, Kwiatek G, Bohnhoff M, Ickrath M (2014b) MSATSI: a MATLAB package for stress inversion combining solid classic methodology, a new simplified user-handling, and a visualization tool. Seismol Res Lett 85(4):896–904. https://doi.org/10.1785/0220130189
  • 24. Martinez-Garzón P, Zaliapin I, Ben-Zion Y, Kwiatek G, Bohnhoff M (2018) Comparative study of earthquake clustering in relation to hydraulic activities at geothermal fields in California. J Geophys Res: Solid Earth. https://doi.org/10.1029/2017JB014972
  • 25. Mirek J, Orlecka-Sikora B, Lasocki S (2010) Studies of migration directions of “tectonic” seismic events for an explanation of controling factors and mechanisms of their generation. Chapter 5.5. In: Zuberek WM, Jochymczyk K (eds) Genesis and characterization of seismic hazard in the Upper Silesian Basin. Wydawnictwo Uniwersytetu Śląskiego, Katowice, pp 64–77 (in Polish)
  • 26. Oppenheimer DH (1986) Extensional tectonics at The Geysers Geothermal Area. California. J Geophys Res 91(B11):11463–11476. https://doi.org/10.1029/JB091iB11p11463
  • 27. Rutqvist J, Dobson PF, Garcia J, Hartline C, Jeanne P, Oldenburg CM, Vasco DW, Walters M (2015) The Northwest Geysers EGS Demonstration Project, California: pre-stimulation modeling and interpretation of the stimulation. Math Geosci 47(1):3–29. https://doi.org/10.1007/s11004-013-9493-y
  • 28. Sausse JC, Dezayes C, Dorbath L, Genter A, Place J (2010) 3D model of fracture zones at Soultz-sous-Forêts based on geological data, image logs, induced microseismicity and vertical seismic profiles. C R Geosci 342(7–8):531–545. https://doi.org/10.1016/jcrte201001011
  • 29. SHEER project: SHEER: “SHale gas Exploration and Exploitation induced Risks” project funded from the European Union Horizon 2020—Research and Innovation Programme, under Grant Agreement 640896. (SHEER, www.sheerproject.eu), coordinators Paolo Capuano, Paolo Gasparini
  • 30. Silverman BW (1986) Density estimation for statistics and data analysis. In: Monographs on statistics and applied probability, vol 26. Chapman and Hall, London
  • 31. Smith B, Beall J, Stark M (2000) Induced seismicity in The SE Geysers Field, California, USA. In: Proceedings world geothermal congress 2000 Kyushu-Tohoku Japan
  • 32. Stark MA, Box Jr WT, Beall J, Goyal KP, Pingol AS (2005) The Santa Rosa—Geysers Recharge Project, Geysers Geothermal Field, California, USA. Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24–29 April 2005
  • 33. Viegas G, Hutchings L (2011) Characterization of induced seismicity near an injection well at the Northwest Geysers Geothermal Field. Calif Geotherm Resources Counc Trans 35:1773–1780
  • 34. Warpinski N (2013) Understanding hydraulic fracture growth, effectiveness, and safety through microseismic monitoring. Eff Sustain Hydraulic Fract. https://doi.org/10.5772/55974
  • 35. Watts DJ, Strogatz SH (1998) Collective dynamics od “small-world” networks. Nature 393:440–442. https://doi.org/10.1038/30918
  • 36. Zaliapin I, Ben-Zion Y (2013a) Earthquake clusters in southern California I: identification and stability. J Geophys Res 118(6):2847–2864. https://doi.org/10.1002/jgrb50179
  • 37. Zaliapin I, Ben-Zion Y (2013b) Earthquake clusters in southern California II: classification and relation to physical properties of the crust. J Geophys Res 118(6):2865–2877. https://doi.org/10.1002/jgrb50178
  • 38. Zhang D, Yang T (2015) Environmental impacts of hydraulic fracturing in shale gas development in the United States. Petrol. Explor. Develop. 42(6):876–883
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec497cbc-67ca-4ac1-98ab-d075075185f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.