Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Machining accuracy can be considerably affected by deflections of machine tool components and the workpiece. This work presents a new approach for real-time deflection compensation, based on control integrated models. A real-time material removal rate (MRR) simulation determines the depth of cut which is used for process force calculation by Kienzle-Equations. Machine tool and workpiece deflections are then derived from a mechanical model using the calculated process forces. For this purpose, control based signals are used as model inputs. The total deviation is sent to the position controller as a setpoint offset. A dynamometer was applied to validate the simulated process forces. The presented approach was validated for cylindrical turning operations on chucked steel shafts. The experiments were carried out on a high-precision slant bed lathe. The results show, that geometrical errors could be reduced by more than 70% on average.
Czasopismo
Rocznik
Tom
Strony
5--16
Opis fizyczny
Bibliogr. 10 poz., rys., tab.
Twórcy
autor
- Leibniz Universität Hannover, Institute of Production Engineering and Machine Tools (IFW), Germany
autor
- Leibniz Universität Hannover, Institute of Production Engineering and Machine Tools (IFW), Germany
autor
- Leibniz Universität Hannover, Institute of Production Engineering and Machine Tools (IFW), Germany
autor
- Leibniz Universität Hannover, Institute of Production Engineering and Machine Tools (IFW), Germany
Bibliografia
- [1] CARRINO L., GIORLEO G., POLINI W., PRISCO U., 2002, Dimensional errors in longitudinal turning based on the unified generalized mechanics of cutting approach. Part I: Three-dimensional theory, International Journal of Machine Tools & Manufacture, 42, 1509-1515.
- [2] DENKENA B., LITWINSKI K.M., BROUWER D., BOUJNAH H., 2013, Design and analysis of a prototypical sensory Z-slide for machine tools, Prod Eng., 7/1, 9-14.
- [3] HESSELBACH J., 2011, Adaptronik für Werkzeugmaschinen, Shaker Verlag, Aachen.
- [4] HOFFMANN F., 2008, Optimierung der dynamischen Bahngenauigkeit von Werkzeugmaschinen mit der Mehrkörpersimulation, Dr.-Ing. Diss, RWTH Aachen.
- [5] KEISER R., 2007, Kompensation von statischen und dynamischen Verlagerungen im Fräsprozess, Dr.-Ing. Diss. RWTH Aachen.
- [6] KIENZLE O., 1952, Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen, VDI-Z, 94/11-12, 299-305.
- [7] KORAJDA B., 2007, Steuerungstechnische Verfahren zur echtzeitfähigen Kompensation der Fräserabdrängung, Dr.-Ing. Diss. Universität Stuttgart.
- [8] LIU Z.Q., 2001, Methodology of parametric programming for error compensation on CNC centers, Int. Journal of Adv. Manufacturing Technology, 17, 570-574.
- [9] LIU Z.Q., 1999, Repetitive measurement and compensation to improve workpiece machining accuracy, Int. Journal of Adv. Manufacturing Technology, 15, 85-89.
- [10] MAYER J.R.R., PHAN A.V., CLOUTIER G., 2000, Prediction of diameter errors in bar turning: a computationally effective model, Applied Mathematical Modelling, 24, 943-956.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec484e5c-bf22-44ac-84f6-0bdd8fe3dc8e