PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat effects in the reaction of sulfuric acid with ilmenites influenced by initial temperature and acid concentration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of temperature and sulfuric acid concentration on the enthalpy and the rate of heat release during the reaction of Norwegian and Australian ilmenites with sulfuric acid was determined. The experimental results obtained from calorimetric measurements were compared with theoretical calculations based on the oxide composition and the phase composition of the raw material. Experimentally determined heat of reaction for Norwegian ilmenite (900–940 kJ/kg) and Australian ilmenite (800–840 kJ/kg) showed good agreement with theoretical calculations based on the phase composition of the raw material. It was found that the enthalpy of ilmenites decomposition reaction does not depend on the concentration of sulfuric acid in the concentration range from 83% to 93%. It was also demonstrated that the temperature and concentration of sulfuric acid have a significant impact on the thermokinetics of the decomposition process, increasing the value of the average rate of temperature change.
Rocznik
Strony
37--42
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland
  • Grupa Azoty Zakłady Chemiczne “Police” S.A., Kuźnicka 1, 72-010 Police
Bibliografia
  • 1. Blakey, R.R. & Hall, J.E., Titanium Dioxide, in Pigment Handbook (P.A. Lewis, Ed.), Wiley, NY, 1987.
  • 2. Winkler, J. (2003). Titanium Dioxide, Vincentz Network, Hannover.
  • 3. Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F., (2009). Physicochemical characterization of raw materials and co-products from the titanium dioxide industry, J. Hazard. Mater., 166, 1429–1440. DOI: 10.1016/j.jhazmat.2008.12.067.
  • 4. Mantero, J., Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F. (2013). Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact. J. Environ. Radio-act. 120, 26–32. DOI: 10.1016/j.jenvrad.2013.01.002.
  • 5. Han, G., Wen, S., Wang, H. & Feng, Q. (2020). Interaction mechanism of tannic acid with pyrite surfaces and its response to flotation separation of chalcopyrite from pyrite in a low-alkaline medium. J. Mater. Res. Technol., 9, 4421–4430. DOI: 10.1016/j.jmrt.2020.02.067.
  • 6. Zhang, Q., Wen, S., Feng, Q. & Liu, J. (2021). Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species. Appl. Surf. Sci. 543, 148795. DOI: 10.1016/j.apsusc.2020.148795.
  • 7. Dubenko, A.V., Nikolenko, M.V., Aksenenko, E.V., Kostyniuk, A. & Likozar, B. (2020). Mechanism, Thermodynamics and Kinetics of Rutile Leaching Process by Sulfuric Acid Reactions. Processes 8, 640. DOI: 10.3390/pr8060640.
  • 8. Dubenko, A.V., Nikolenko, M.V., Kostyniuk, A. & Likozar, B. (2020). Sulfuric Acid Leaching of Altered Ilmenite Using Thermal. Mechanical and Chemical Activation. Minerals 10, 538. DOI: 10.3390/min10060538.
  • 9. Liang, B., Li, C., Zhang, C. & Zhang, Y. (2005). Leaching kinetics of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy 76, 173–179.DOI: 10.1016/j.hydromet.2004.10.006.
  • 10. Johnson, R.W., Audy, S.W. & Unwin, S.D. (2003). Essential Practices for Managing Chemical Reactivity Hazards, New York, AIChE.
  • 11. Bretherick’s Handbook of Reactive Chemical Hazards (P.G. Urben, Ed.), Academic Press, Amsterdam, 2006.
  • 12. Zheng, Y., Zhang, C. & Liu, H. (2020).The determination of isobaric heat capacities of liquid by the new flow calorimeter. Thermoch. Acta 690, 178644. DOI: 10.1016/j.tca.2020.178644.
  • 13. Ding, J., Yu, L., Wang, J., Xu, Q. & Ye, S. (2019). A symmetric dual-channel accelerating rate calorimeter with the varying thermal inertia consideration. Thermoch. Acta 678, 178304. DOI: /10.1016/j.tca.2019.178304.
  • 14. Hany, C., Lebrun, H., Pradere, C., Toutain, J. & Batsale, J.Ch. (2010). Thermal analysis of chemical reaction with a continuous microfluidic calorimeter. Chem. Engin. J. 160, 814–822. DOI: 10.1016/j.cej.2010.02.048.
  • 15. Duh, Y.S., Hsu, C.C., Kao, C.S. & Yu, S.W. (1996). Applications of reaction calorimetry in reaction kinetics and thermal hazard evaluation. Thermoch. Acta, 285, 67–9.
  • 16. Ortín, J., Torra, V. & Tachoire, H. (1987). Thermal power measurements in a differential-heat-conduction-scanning calorimeter at low temperature-scanning rates. Thermoch. Acta 121, 333–342. DOI: 10.1016/0040-6031(87)80183-1.
  • 17. Leung, J.C., Fauske, H.K. & Fisher, H.G. (1986). Thermal runaway reactions in a low thermal inertia apparatus. Thermoch. Acta 104, 13–29. DOI: 10.1016/0040-6031(86)85180-2.
  • 18. Jabłoński, M. & Tylutka, S. (2016). The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials. J. Thermal Anal. Calorim. 124, 355–361. DOI: 10.1007/s10973-015-5114-y.
  • 19. Przepiera, A., Jabłoński, M. & Wiśniewski, M. (1993). Study of kinetics of reaction of titanium raw materials with sulphuric acid. J. Thermal Anal. 40, 1341–1345. DOI: 10.1007/BF02546898.
  • 20. Jabłoński, M. (2009). Influence of particle size distribution on thermokinetics of ilmenite with sulphuric acid reaction. J. Thermal Anal. Calorim. 96, 971–977. DOI: 10.1007/s10973-009-0048-x.
  • 21. Jabłoński, M., Ławniczak-Jabłońska, K. & Klepka, M.T. (2012). Investigation of phase composition of ilmenites and influence of this parameter on thermokinetics of reaction with sulphuric acid. J. Thermal Anal. Calorim. 109, 1379–1385. DOI: 10.1007/s10973-011-2136-y.
  • 22. Parapari, P.S., Irannajad, M. & Mehdilo, A. (2016). Modification of ilmenite surface properties by superficial dissolution method. Miner. Engin., 92, 160–167. DOI: 10.1016/j.mineng.2016.03.016.
  • 23. Jabłoński, M. (2010). Investigation of thermal power of reaction of titanium slag with sulphuric acid. Central Europ. J. Chem. 8(1), 149–154. DOI: 10.2478/s11532-009-0127-7.
  • 24. Jabłoński, M. (2008). Investigation of reaction products of sulphuric acid with ilmenite, J.Thermal Anal. Calorim., 93, 717–720. DOI: 10.1007/s10973-008-9134-8.
  • 25. Dobrovolski, I.P. (1988). The chemistry and technology of the oxide compounds of titanium, Sverdlovsk: UrO AN SSSR.
  • 26. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L. & Nuttall, R.L. (1982. The NBS Tables of Chemical Thermodynamic Properties. J. Phys. Chem. Ref. Data 11, Suppl. 2.
  • 27. Barin, I. & Knacke, O. (1973). Thermochemical properties of inorganic substances, Springer-Verlag Berlin Heildelberg New York.
  • 28. Carl, L. (2009). Yaws’ Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals, Publisher Knovel, Electronic ISBN 978-1-60119-797-9.
  • 29. Ginsberg, T., Modigell, M. & Wilsmann, W. (2011). Thermochemical characterization of the calcination process step in the sulphate method for production of titanium dioxide, Chemical Engineering Research and Design, 89, 990–994. DOI: 10.1016/j.cherd.2010.11.006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec44f41b-dcb7-4891-b324-fb6a9468b47b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.